skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Revealing the Statistics of Extreme Events Hidden in Short Weather Forecast Data
Abstract

Extreme weather events have significant consequences, dominating the impact of climate on society. While high‐resolution weather models can forecast many types of extreme events on synoptic timescales, long‐term climatological risk assessment is an altogether different problem. A once‐in‐a‐century event takes, on average, 100 years of simulation time to appear just once, far beyond the typical integration length of a weather forecast model. Therefore, this task is left to cheaper, but less accurate, low‐resolution or statistical models. But there is untapped potential in weather model output: despite being short in duration, weather forecast ensembles are produced multiple times a week. Integrations are launched with independent perturbations, causing them to spread apart over time and broadly sample phase space. Collectively, these integrations add up to thousands of years of data. We establish methods to extract climatological information from these short weather simulations. Using ensemble hindcasts by the European Center for Medium‐range Weather Forecasting archived in the subseasonal‐to‐seasonal (S2S) database, we characterize sudden stratospheric warming (SSW) events with multi‐centennial return times. Consistent results are found between alternative methods, including basic counting strategies and Markov state modeling. By carefully combining trajectories together, we obtain estimates of SSW frequencies and their seasonal distributions that are consistent with reanalysis‐derived estimates for moderately rare events, but with much tighter uncertainty bounds, and which can be extended to events of unprecedented severity that have not yet been observed historically. These methods hold potential for assessing extreme events throughout the climate system, beyond this example of stratospheric extremes.

 
more » « less
Award ID(s):
2054306 2004572
NSF-PAR ID:
10409177
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
AGU Advances
Volume:
4
Issue:
2
ISSN:
2576-604X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rare events arising in nonlinear atmospheric dynamics remain hard to predict and attribute. We address the problem of forecasting rare events in a prototypical example, sudden stratospheric warmings (SSWs). Approximately once every other winter, the boreal stratospheric polar vortex rapidly breaks down, shifting midlatitude surface weather patterns for months. We focus on two key quantities of interest: the probability of an SSW occurring, and the expected lead time if it does occur, as functions of initial condition. These optimal forecasts concretely measure the event’s progress. Direct numerical simulation can estimate them in principle but is prohibitively expensive in practice: each rare event requires a long integration to observe, and the cost of each integration grows with model complexity. We describe an alternative approach using integrations that are short compared to the time scale of the warming event. We compute the probability and lead time efficiently by solving equations involving the transition operator, which encodes all information about the dynamics. We relate these optimal forecasts to a small number of interpretable physical variables, suggesting optimal measurements for forecasting. We illustrate the methodology on a prototype SSW model developed by Holton and Mass and modified by stochastic forcing. While highly idealized, this model captures the essential nonlinear dynamics of SSWs and exhibits the key forecasting challenge: the dramatic separation in time scales between a single event and the return time between successive events. Our methodology is designed to fully exploit high-dimensional data from models and observations, and has the potential to identify detailed predictors of many complex rare events in meteorology. 
    more » « less
  2. Table of Contents: Foreword by the CI 2016 Workshop Chairs …………………………………vi Foreword by the CI 2016 Steering Committee ..…………………………..…..viii List of Organizing Committee ………………………….……....x List of Registered Participants .………………………….……..xi Acknowledgement of Sponsors ……………………………..…xiv Hackathon and Workshop Agenda .………………………………..xv Hackathon Summary .………………………….…..xviii Invited talks - abstracts and links to presentations ………………………………..xxi Proceedings: 34 short research papers ……………………………….. 1-135 Papers 1. BAYESIAN MODELS FOR CLIMATE RECONSTRUCTION FROM POLLEN RECORDS ..................................... 1 Lasse Holmström, Liisa Ilvonen, Heikki Seppä, Siim Veski 2. ON INFORMATION CRITERIA FOR DYNAMIC SPATIO-TEMPORAL CLUSTERING ..................................... 5 Ethan D. Schaeffer, Jeremy M. Testa, Yulia R. Gel, Vyacheslav Lyubchich 3. DETECTING MULTIVARIATE BIOSPHERE EXTREMES ..................................... 9 Yanira Guanche García, Erik Rodner, Milan Flach, Sebastian Sippel, Miguel Mahecha, Joachim Denzler 4. SPATIO-TEMPORAL GENERATIVE MODELS FOR RAINFALL OVER INDIA ..................................... 13 Adway Mitra 5. A NONPARAMETRIC COPULA BASED BIAS CORRECTION METHOD FOR STATISTICAL DOWNSCALING ..................................... 17 Yi Li, Adam Ding, Jennifer Dy 6. DETECTING AND PREDICTING BEAUTIFUL SUNSETS USING SOCIAL MEDIA DATA ..................................... 21 Emma Pierson 7. OCEANTEA: EXPLORING OCEAN-DERIVED CLIMATE DATA USING MICROSERVICES ..................................... 25 Arne N. Johanson, Sascha Flögel, Wolf-Christian Dullo, Wilhelm Hasselbring 8. IMPROVED ANALYSIS OF EARTH SYSTEM MODELS AND OBSERVATIONS USING SIMPLE CLIMATE MODELS ..................................... 29 Balu Nadiga, Nathan Urban 9. SYNERGY AND ANALOGY BETWEEN 15 YEARS OF MICROWAVE SST AND ALONG-TRACK SSH ..................................... 33 Pierre Tandeo, Aitor Atencia, Cristina Gonzalez-Haro 10. PREDICTING EXECUTION TIME OF CLIMATE-DRIVEN ECOLOGICAL FORECASTING MODELS ..................................... 37 Scott Farley and John W. Williams 11. SPATIOTEMPORAL ANALYSIS OF SEASONAL PRECIPITATION OVER US USING CO-CLUSTERING ..................................... 41 Mohammad Gorji–Sefidmazgi, Clayton T. Morrison 12. PREDICTION OF EXTREME RAINFALL USING HYBRID CONVOLUTIONAL-LONG SHORT TERM MEMORY NETWORKS ..................................... 45 Sulagna Gope, Sudeshna Sarkar, Pabitra Mitra 13. SPATIOTEMPORAL PATTERN EXTRACTION WITH DATA-DRIVEN KOOPMAN OPERATORS FOR CONVECTIVELY COUPLED EQUATORIAL WAVES ..................................... 49 Joanna Slawinska, Dimitrios Giannakis 14. COVARIANCE STRUCTURE ANALYSIS OF CLIMATE MODEL OUTPUT ..................................... 53 Chintan Dalal, Doug Nychka, Claudia Tebaldi 15. SIMPLE AND EFFICIENT TENSOR REGRESSION FOR SPATIOTEMPORAL FORECASTING ..................................... 57 Rose Yu, Yan Liu 16. TRACKING OF TROPICAL INTRASEASONAL CONVECTIVE ANOMALIES ..................................... 61 Bohar Singh, James L. Kinter 17. ANALYSIS OF AMAZON DROUGHTS USING SUPERVISED KERNEL PRINCIPAL COMPONENT ANALYSIS ..................................... 65 Carlos H. R. Lima, Amir AghaKouchak 18. A BAYESIAN PREDICTIVE ANALYSIS OF DAILY PRECIPITATION DATA ..................................... 69 Sai K. Popuri, Nagaraj K. Neerchal, Amita Mehta 19. INCORPORATING PRIOR KNOWLEDGE IN SPATIO-TEMPORAL NEURAL NETWORK FOR CLIMATIC DATA ..................................... 73 Arthur Pajot, Ali Ziat, Ludovic Denoyer, Patrick Gallinari 20. DIMENSIONALITY-REDUCTION OF CLIMATE DATA USING DEEP AUTOENCODERS ..................................... 77 Juan A. Saenz, Nicholas Lubbers, Nathan M. Urban 21. MAPPING PLANTATION IN INDONESIA ..................................... 81 Xiaowei Jia, Ankush Khandelwal, James Gerber, Kimberly Carlson, Paul West, Vipin Kumar 22. FROM CLIMATE DATA TO A WEIGHTED NETWORK BETWEEN FUNCTIONAL DOMAINS ..................................... 85 Ilias Fountalis, Annalisa Bracco, Bistra Dilkina, Constantine Dovrolis 23. EMPLOYING SOFTWARE ENGINEERING PRINCIPLES TO ENHANCE MANAGEMENT OF CLIMATOLOGICAL DATASETS FOR CORAL REEF ANALYSIS ..................................... 89 Mark Jenne, M.M. Dalkilic, Claudia Johnson 24. Profiler Guided Manual Optimization for Accelerating Cholesky Decomposition on R Environment ..................................... 93 V.B. Ramakrishnaiah, R.P. Kumar, J. Paige, D. Hammerling, D. Nychka 25. GLOBAL MONITORING OF SURFACE WATER EXTENT DYNAMICS USING SATELLITE DATA ..................................... 97 Anuj Karpatne, Ankush Khandelwal and Vipin Kumar 26. TOWARD QUANTIFYING TROPICAL CYCLONE RISK USING DIAGNOSTIC INDICES .................................... 101 Erica M. Staehling and Ryan E. Truchelut 27. OPTIMAL TROPICAL CYCLONE INTENSITY ESTIMATES WITH UNCERTAINTY FROM BEST TRACK DATA .................................... 105 Suz Tolwinski-Ward 28. EXTREME WEATHER PATTERN DETECTION USING DEEP CONVOLUTIONAL NEURAL NETWORK .................................... 109 Yunjie Liu, Evan Racah, Prabhat, Amir Khosrowshahi, David Lavers, Kenneth Kunkel, Michael Wehner, William Collins 29. INFORMATION TRANSFER ACROSS TEMPORAL SCALES IN ATMOSPHERIC DYNAMICS .................................... 113 Nikola Jajcay and Milan Paluš 30. Identifying precipitation regimes in China using model-based clustering of spatial functional data .................................... 117 Haozhe Zhang, Zhengyuan Zhu, Shuiqing Yin 31. RELATIONAL RECURRENT NEURAL NETWORKS FOR SPATIOTEMPORAL INTERPOLATION FROM MULTI-RESOLUTION CLIMATE DATA .................................... 121 Guangyu Li, Yan Liu 32. OBJECTIVE SELECTION OF ENSEMBLE BOUNDARY CONDITIONS FOR CLIMATE DOWNSCALING .................................... 124 Andrew Rhines, Naomi Goldenson 33. LONG-LEAD PREDICTION OF EXTREME PRECIPITATION CLUSTER VIA A SPATIO-TEMPORAL CONVOLUTIONAL NEURAL NETWORK .................................... 128 Yong Zhuang, Wei Ding 34. MULTIPLE INSTANCE LEARNING FOR BURNED AREA MAPPING USING MULTI –TEMPORAL REFLECTANCE DATA .................................... 132 Guruprasad Nayak, Varun Mithal, Vipin Kumar 
    more » « less
  3. Abstract

    Heatwaves are extreme near-surface temperature events that can have substantial impacts on ecosystems and society. Early warning systems help to reduce these impacts by helping communities prepare for hazardous climate-related events. However, state-of-the-art prediction systems can often not make accurate forecasts of heatwaves more than two weeks in advance, which are required for advance warnings. We therefore investigate the potential of statistical and machine learning methods to understand and predict central European summer heatwaves on time scales of several weeks. As a first step, we identify the most important regional atmospheric and surface predictors based on previous studies and supported by a correlation analysis: 2-m air temperature, 500-hPa geopotential, precipitation, and soil moisture in central Europe, as well as Mediterranean and North Atlantic sea surface temperatures, and the North Atlantic jet stream. Based on these predictors, we apply machine learning methods to forecast two targets: summer temperature anomalies and the probability of heatwaves for 1–6 weeks lead time at weekly resolution. For each of these two target variables, we use both a linear and a random forest model. The performance of these statistical models decays with lead time, as expected, but outperforms persistence and climatology at all lead times. For lead times longer than two weeks, our machine learning models compete with the ensemble mean of the European Centre for Medium-Range Weather Forecast’s hindcast system. We thus show that machine learning can help improve subseasonal forecasts of summer temperature anomalies and heatwaves.

    Significance Statement

    Heatwaves (prolonged extremely warm temperatures) cause thousands of fatalities worldwide each year. These damaging events are becoming even more severe with climate change. This study aims to improve advance predictions of summer heatwaves in central Europe by using statistical and machine learning methods. Machine learning models are shown to compete with conventional physics-based models for forecasting heatwaves more than two weeks in advance. These early warnings can be used to activate effective and timely response plans targeting vulnerable communities and regions, thereby reducing the damage caused by heatwaves.

     
    more » « less
  4. Abstract

    Heatwaves are projected to increase in frequency and severity with global warming. Improved warning systems would help reduce the associated loss of lives, wildfires, power disruptions, and reduction in crop yields. In this work, we explore the potential for deep learning systems trained on historical data to forecast extreme heat on short, medium and subseasonal time scales. To this purpose, we train a set of neural weather models (NWMs) with convolutional architectures to forecast surface temperature anomalies globally, 1 to 28 days ahead, at ∼200-km resolution and on the cubed sphere. The NWMs are trained using the ERA5 reanalysis product and a set of candidate loss functions, including the mean-square error and exponential losses targeting extremes. We find that training models to minimize custom losses tailored to emphasize extremes leads to significant skill improvements in the heatwave prediction task, relative to NWMs trained on the mean-square-error loss. This improvement is accomplished with almost no skill reduction in the general temperature prediction task, and it can be efficiently realized through transfer learning, by retraining NWMs with the custom losses for a few epochs. In addition, we find that the use of a symmetric exponential loss reduces the smoothing of NWM forecasts with lead time. Our best NWM is able to outperform persistence in a regressive sense for all lead times and temperature anomaly thresholds considered, and shows positive regressive skill relative to the ECMWF subseasonal-to-seasonal control forecast after 2 weeks.

    Significance Statement

    Heatwaves are projected to become stronger and more frequent as a result of global warming. Accurate forecasting of these events would enable the implementation of effective mitigation strategies. Here we analyze the forecast accuracy of artificial intelligence systems trained on historical surface temperature data to predict extreme heat events globally, 1 to 28 days ahead. We find that artificial intelligence systems trained to focus on extreme temperatures are significantly more accurate at predicting heatwaves than systems trained to minimize errors in surface temperatures and remain equally skillful at predicting moderate temperatures. Furthermore, the extreme-focused systems compete with state-of-the-art physics-based forecast systems in the subseasonal range, while incurring a much lower computational cost.

     
    more » « less
  5. null (Ed.)
    The use of hydro-meteorological forecasts in water resources management holds great promise as a soft pathway to improve system performance. Methods for generating synthetic forecasts of hydro-meteorological variables are crucial for robust validation of forecast use, as numerical weather prediction hindcasts are only available for a relatively short period (10–40 years) that is insufficient for assessing risk related to forecast-informed decision-making during extreme events. We develop a generalized error model for synthetic forecast generation that is applicable to a range of forecasted variables used in water resources management. The approach samples from the distribution of forecast errors over the available hindcast period and adds them to long records of observed data to generate synthetic forecasts. The approach utilizes the Skew Generalized Error Distribution (SGED) to model marginal distributions of forecast errors that can exhibit heteroskedastic, auto-correlated, and non-Gaussian behavior. An empirical copula is used to capture covariance between variables, forecast lead times, and across space. We demonstrate the method for medium-range forecasts across Northern California in two case studies for (1) streamflow and (2) temperature and precipitation, which are based on hindcasts from the NOAA/NWS Hydrologic Ensemble Forecast System (HEFS) and the NCEP GEFS/R V2 climate model, respectively. The case studies highlight the flexibility of the model and its ability to emulate space-time structures in forecasts at scales critical for water resources management. The proposed method is generalizable to other locations and computationally efficient, enabling fast generation of long synthetic forecast ensembles that are appropriate for risk analysis. 
    more » « less