skip to main content


Title: What the geological past can tell us about the future of the ocean’s twilight zone
Abstract

Paleontological reconstructions of plankton community structure during warm periods of the Cenozoic (last 66 million years) reveal that deep-dwelling ‘twilight zone’ (200–1000 m) plankton were less abundant and diverse, and lived much closer to the surface, than in colder, more recent climates. We suggest that this is a consequence of temperature’s role in controlling the rate that sinking organic matter is broken down and metabolized by bacteria, a process that occurs faster at warmer temperatures. In a warmer ocean, a smaller fraction of organic matter reaches the ocean interior, affecting food supply and dissolved oxygen availability at depth. Using an Earth system model that has been evaluated against paleo observations, we illustrate how anthropogenic warming may impact future carbon cycling and twilight zone ecology. Our findings suggest that significant changes are already underway, and without strong emissions mitigation, widespread ecological disruption in the twilight zone is likely by 2100, with effects spanning millennia thereafter.

 
more » « less
Award ID(s):
2121165
NSF-PAR ID:
10409592
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Theory suggests that the ocean’s biological carbon pump, the process by which organic matter is produced at the surface and transferred to the deep ocean, is sensitive to temperature because temperature controls photosynthesis and respiration rates. We applied a combined data-modeling approach to investigate carbon and nutrient recycling rates across the world ocean over the past 15 million years of global cooling. We found that the efficiency of the biological carbon pump increased with ocean cooling as the result of a temperature-dependent reduction in the rate of remineralization (degradation) of sinking organic matter. Increased food delivery at depth prompted the development of new deep-water niches, triggering deep plankton evolution and the expansion of the mesopelagic “twilight zone” ecosystem.

     
    more » « less
  2. Abstract

    The strength of the biological soft tissue pump in the ocean critically depends on how much organic carbon is produced via photosynthesis and how efficiently the carbon is transferred to the ocean interior. For a given amount of limiting nutrient, phosphate, soft tissue pump would be strengthened if the carbon (C) to phosphorus (P) ratio of sinking organic matter increases as the remineralization length scale of C increases. Here, we present a new data compilation of particle flux stoichiometry and show that C:P of sinking particulate organic matter (POM) in the ocean twilight zone on average is likely to be higher than the C:P ratio of surface suspended POM. We further demonstrate using a physics‐biology coupled global ocean model combined with a theory from first principles that an increase in C:P export flux ratio in the ocean's twilight zone can lead to a considerable drawdown of atmosphericpCO2.

     
    more » « less
  3. Abstract

    A past global synthesis of marine particulate organic matter (POM) suggested latitudinal variation in the ratio of surface carbon (C): nitrogen (N): phosphorus (P). However, this synthesis relied on compiled datasets that may have biased the observed pattern. To demonstrate latitudinal shifts in surface C:N:P, we combined hydrographic and POM observations from 28°N to 69°S in the eastern Pacific Ocean (GO‐SHIP line P18). Both POM concentrations and ratios displayed distinct biome‐associated changes. Surface POM concentrations were relatively low in the North Pacific subtropical gyre, increased through the Equatorial Pacific, were lowest in the South Pacific subtropical gyre, and increased through the Southern Ocean. Stoichiometric elemental ratios were systematically above Redfield proportions in warmer regions. However, C:P and N:P gradually decreased across the Southern Ocean despite an abundance of macro‐nutrients. Here, a size‐fraction analysis of POM linked increases in the proportion of large plankton to declining ratios. Subsurface N* values support the hypothesis that accumulated remineralization products of low C:P and N:P exported POM helps maintain the Redfield Ratio of deep nutrients. We finally evaluated stoichiometric models against observations to assess predictive accuracy. We attributed the failure of all models to their inability to capture shifts in the specific nature of nutrient limitation. Our results point to more complex linkages between multinutrient limitation and cellular resource allocation than currently parameterized in models. These results suggest a greater importance of understanding the interaction between the type of nutrient limitation and plankton diversity for predicting the global variation in surface C:N:P.

     
    more » « less
  4. Abstract

    Future environmental change may profoundly affect oceanic ecosystems in a complex way, due to the synergy between rising temperatures, reduction in mixing and upwelling due to enhanced stratification, ocean acidification, and associated biogeochemical dynamics. Changes in primary productivity, in export of organic carbon from the surface ocean, and in remineralization deeper in the water column in the so‐called “twilight zone” may substantially alter the marine biological carbon pump, thus carbon storage in the oceans. We present different proxy records commonly used for reconstructing paleoproductivity, and re‐evaluate their use for understanding dynamic change within and between different constituents of the marine biological pump during transient global warming episodes in the past. Marine pelagic barite records are a proxy for carbon export from the photic and/or mesopelagic zone, and are not positively correlated with benthic foraminiferal proxies for arrival of organic matter to the seafloor over three early Eocene periods of global warming (Ocean Drilling Program Site 1263, SE Atlantic). These two proxies reflect processes in different parts of the water column, thus different components of the biological pump. An increase in temperature‐dependent organic carbon remineralization in the water column would have caused decreased arrival of food at the seafloor, starving the benthic biota and explaining the differences between the proxies, and may have led to ocean deoxygenation. Carbon cycle modeling demonstrates the feasibility of enhanced water‐column remineralization to explain both Site 1263 records, suggesting that this mechanism amplifiespCO2increase, representing a positive feedback during hyperthermal warming.

     
    more » « less
  5. Summary

    The evolutionary and ecological story of coccolithophores poses questions about their heterotrophy, surviving darkness after the end‐Cretaceous asteroid impact as well as survival in the deep ocean twilight zone. Uptake of dissolved organic carbon might be an alternative nutritional strategy for supply of energy and carbon molecules.

    Using long‐term batch culture experiments, we examined coccolithophore growth and maintenance on organic compounds in darkness. Radiolabelled experiments were performed to study the uptake kinetics. Pulse–chase experiments were used to examine the uptake into unassimilated, exchangeable pools vs assimilated, nonexchangeable pools.

    We found that coccolithophores were able to survive and maintain their metabolism for up to 30 d in darkness, accomplishing about one cell division. The concentration dependence for uptake was similar to the concentration dependence for growth inCruciplacolithus neohelis, suggesting that it was taking up carbon compounds and immediately incorporating them into biomass. We recorded net incorporation of radioactivity into the particulate inorganic fraction.

    We conclude that osmotrophy provides nutritional flexibility and supports long‐term survival in light intensities well below threshold for photosynthesis. The incorporation of dissolved organic matter into particulate inorganic carbon, raises fundamental questions about the role of the alkalinity pump and the alkalinity balance in the sea.

     
    more » « less