This content will become publicly available on April 1, 2025
Photosynthesis in the surface ocean and subsequent export of a fraction of this fixed carbon leads to carbon dioxide sequestration in the deep ocean. Ecological relationships among plankton functional groups and theoretical relationships between particle size and sinking rate suggest that carbon export from the euphotic zone is more efficient when communities are dominated by large organisms. However, this hypothesis has never been tested against measured size spectra spanning the >5 orders of magnitude found in plankton communities. Using data from five ocean regions (California Current Ecosystem, North Pacific subtropical gyre, Costa Rica Dome, Gulf of Mexico, and Southern Ocean subtropical front), we quantified carbon‐based plankton size spectra from heterotrophic bacteria to metazoan zooplankton (size class cutoffs varied slightly between regions) and their relationship to net primary production and sinking particle flux. Slopes of the normalized biomass size spectra (NBSS) varied from −1.6 to −1.2 (median slope of −1.4 equates to large 1–10 mm organisms having a biomass equal to only 7.6% of the biomass in small 1–10 μm organisms). Net primary production was positively correlated with the NBSS slope, with a particularly strong relationship in the microbial portion of the size spectra. While organic carbon export co‐varied with NBSS slope, we found only weak evidence that export efficiency is related to plankton community size spectra. Multi‐variate statistical analysis suggested that properties of the NBSS added no explanatory power over chlorophyll, primary production, and temperature. Rather, the results suggest that both plankton size spectra and carbon export increase with increasing system productivity.
more » « less- PAR ID:
- 10515357
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Global Biogeochemical Cycles
- Volume:
- 38
- Issue:
- 4
- ISSN:
- 0886-6236
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Subtropical oceans contribute significantly to global primary production, but the fate of the picophytoplankton that dominate in these low-nutrient regions is poorly understood. Working in the subtropical Mediterranean, we demonstrate that subduction of water at ocean fronts generates 3D intrusions with uncharacteristically high carbon, chlorophyll, and oxygen that extend below the sunlit photic zone into the dark ocean. These contain fresh picophytoplankton assemblages that resemble the photic-zone regions where the water originated. Intrusions propagate depth-dependent seasonal variations in microbial assemblages into the ocean interior. Strikingly, the intrusions included dominant biomass contributions from nonphotosynthetic bacteria and enrichment of enigmatic heterotrophic bacterial lineages. Thus, the intrusions not only deliver material that differs in composition and nutritional character from sinking detrital particles, but also drive shifts in bacterial community composition, organic matter processing, and interactions between surface and deep communities. Modeling efforts paired with global observations demonstrate that subduction can flux similar magnitudes of particulate organic carbon as sinking export, but is not accounted for in current export estimates and carbon cycle models. Intrusions formed by subduction are a particularly important mechanism for enhancing connectivity between surface and upper mesopelagic ecosystems in stratified subtropical ocean environments that are expanding due to the warming climate.more » « less
-
We use observations from the Southern Ocean (SO) biogeochemical profiling float array to quantify the meridional pattern of particle export efficiency (PEeff) during the austral productive season. Float estimates reveal a pronounced latitudinal gradient of PEeff, which is quantitatively supported by a compilation of existing ship‐based measurements. Relying on complementary float‐based estimates of distinct carbon pools produced through biological activity, we find that PEeffpeaks near the region of maximum particulate inorganic carbon sinking flux in the polar antarctic zone, where net primary production (NPP) is the lowest. Regions characterized by intermediate NPP and low PEeff, primarily in the subtropical and seasonal ice zones, are generally associated with a higher fraction of dissolved organic carbon production. Our study reveals the critical role of distinct biogenic carbon pool production in driving the latitudinal pattern of PEeffin the SO.more » « less
-
Abstract. Recent earth system models predict a 10 %–20 % decrease in particulate organic carbon export from the surface ocean by the end of the21st century due to global climate change. This decline is mainly caused by increased stratification of the upper ocean, resulting in reducedshallow subsurface nutrient concentrations and a slower supply of nutrients to the surface euphotic zone in low latitudes. These predictions,however, do not typically account for associated changes in remineralization depths driven by sinking-particle size. Here we combinesatellite-derived export and particle size maps with a simple 3-D global biogeochemical model that resolves dynamic particle size distributions toinvestigate how shifts in particle size may buffer or amplify predicted changes in surface nutrient supply and therefore export production. We showthat higher export rates are empirically correlated with larger sinking particles and presumably larger phytoplankton, particularly in tropical andsubtropical regions. Incorporating these empirical relationships into our global model shows that as circulation slows, a decrease in export isassociated with a shift towards smaller particles, which sink more slowly and are thus remineralized shallower. This shift towards shallowerremineralization in turn leads to greater recycling of nutrients in the upper water column and thus faster nutrient recirculation into the euphoticzone. The end result is a boost in productivity and export that counteracts the initial circulation-driven decreases. This negative feedbackmechanism (termed the particle-size–remineralization feedback) slows export decline over the next century by ∼ 14 % globally (from −0.29to −0.25 GtC yr−1) and by ∼ 20 % in the tropical and subtropical oceans, where export decreases are currently predicted tobe greatest. Our findings suggest that to more accurately predict changes in biological pump strength under a warming climate, earth system modelsshould include dynamic particle-size-dependent remineralization depths.more » « less
-
Abstract. Heterotrophic marine bacteria utilize organic carbon for growth and biomass synthesis. Thus, their physiological variability is key to the balancebetween the production and consumption of organic matter and ultimately particle export in the ocean. Here we investigate a potential link betweenbacterial traits and ecosystem functions in the rapidly warming West Antarctic Peninsula (WAP) region based on a bacteria-oriented ecosystemmodel. Using a data assimilation scheme, we utilize the observations of bacterial groups with different physiological traits to constrain thegroup-specific bacterial ecosystem functions in the model. We then examine the association of the modeled bacterial and other key ecosystemfunctions with eight recurrent modes representative of different bacterial taxonomic traits. Both taxonomic and physiological traits reflect thevariability in bacterial carbon demand, net primary production, and particle sinking flux. Numerical experiments under perturbed climate conditionsdemonstrate a potential shift from low nucleic acid bacteria to high nucleic acid bacteria-dominated communities in the coastal WAP. Our studysuggests that bacterial diversity via different taxonomic and physiological traits can guide the modeling of the polar marine ecosystem functionsunder climate change.more » « less
-
Sinking particles are a critical conduit for the export of organic material from surface waters to the deep ocean. Despite their importance in oceanic carbon cycling and export, little is known about the biotic composition, origins, and variability of sinking particles reaching abyssal depths. Here, we analyzed particle-associated nucleic acids captured and preserved in sediment traps at 4,000-m depth in the North Pacific Subtropical Gyre. Over the 9-month time-series, Bacteria dominated both the rRNA-gene and rRNA pools, followed by eukaryotes (protists and animals) and trace amounts of Archaea. Deep-sea piezophile-like Gammaproteobacteria, along with Epsilonproteobacteria, comprised >80% of the bacterial inventory. Protists (mostly Rhizaria, Syndinales, and ciliates) and metazoa (predominantly pelagic mollusks and cnidarians) were the most common sinking particle-associated eukaryotes. Some near-surface water-derived eukaryotes, especially Foraminifera, Radiolaria, and pteropods, varied greatly in their abundance patterns, presumably due to sporadic export events. The dominance of piezophile-like Gammaproteobacteria and Epsilonproteobacteria, along with the prevalence of their nitrogen cycling-associated gene transcripts, suggested a central role for these bacteria in the mineralization and biogeochemical transformation of sinking particulate organic matter in the deep ocean. Our data also reflected several different modes of particle export dynamics, including summer export, more stochastic inputs from the upper water column by protists and pteropods, and contributions from sinking mid- and deep-water organisms. In total, our observations revealed the variable and heterogeneous biological origins and microbial activities of sinking particles that connect their downward transport, transformation, and degradation to deep-sea biogeochemical processes.more » « less