skip to main content


Title: 7.5 kV, 6.2 GW cm−2 NiO/β-Ga2O3 vertical rectifiers with on–off ratio greater than 1013
Vertical geometry NiO/β n-Ga2O/n+ Ga2O3 heterojunction rectifiers with contact sizes from 50 to 200 μm diameter showed breakdown voltages (VB) up to 7.5 kV for drift region carrier concentration of 8 × 1015 cm−3. This exceeds the unipolar 1D limit for SiC and was achieved without substrate thinning or annealing of the epi layer structure. The power figure-of-merit, VB2/RON, was 6.2 GW cm−2, where RON is the on-state resistance (9.3–14.7 mΩ cm2). The average electric field strength was 7.56 MV/cm, approaching the maximum for β-Ga2O3. The on–off ratio switching from 5 to 0 V was 2 × 1013, while it was 3 × 1010–2 × 1011 switching to 100 V. The turn-on voltage was in the range 1.9–2.1 V for the different contact diameters, while the reverse current density was in the range 2 × 10−8–2 × 10−9 A cm−2 at −100 V. The reverse recovery time was 21 ns, while the forward current density was >100 A/cm2 at 5 V.  more » « less
Award ID(s):
1856662
NSF-PAR ID:
10409702
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Vacuum Science & Technology A
Volume:
41
Issue:
3
ISSN:
0734-2101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The effect of doping in the drift layer and the thickness and extent of extension beyond the cathode contact of a NiO bilayer in vertical NiO/β-Ga2O3 rectifiers is reported. Decreasing the drift layer doping from 8 × 1015 to 6.7 × 1015 cm−3 produced an increase in reverse breakdown voltage (VB) from 7.7 to 8.9 kV, the highest reported to date for small diameter devices (100 μm). Increasing the bottom NiO layer from 10 to 20 nm did not affect the forward current–voltage characteristics but did reduce reverse leakage current for wider guard rings and reduced the reverse recovery switching time. The NiO extension beyond the cathode metal to form guard rings had only a slight effect (∼5%) in reverse breakdown voltage. The use of NiO to form a pn heterojunction made a huge improvement in VB compared to conventional Schottky rectifiers, where the breakdown voltage was ∼1 kV. The on-state resistance (RON) was increased from 7.1 m Ω cm2 in Schottky rectifiers fabricated on the same wafer to 7.9 m Ω cm2 in heterojunctions. The maximum power figure of merit (VB)2/RON was 10.2 GW cm−2 for the 100 μm NiO/Ga2O3 devices. We also fabricated large area (1 mm2) devices on the same wafer, achieving VB of 4 kV and 4.1 A forward current. The figure-of-merit was 9 GW  cm−2 for these devices. These parameters are the highest reported for large area Ga2O3 rectifiers. Both the small area and large area devices have performance exceeding the unipolar power device performance of both SiC and GaN. 
    more » « less
  2. Large area (1 mm2) vertical NiO/βn-Ga2O/n+Ga2O3heterojunction rectifiers are demonstrated with simultaneous high breakdown voltage and large conducting currents. The devices showed breakdown voltages (VB) of 3.6 kV for a drift layer doping of 8 × 1015cm−3, with 4.8 A forward current. This performance is higher than the unipolar 1D limit for GaN, showing the promise ofβ-Ga2O3for future generations of high-power rectification devices. The breakdown voltage was a strong function of drift region carrier concentration, with VBdropping to 1.76 kV for epi layer doping of 2 × 1016cm−3. The power figure-of-merit, VB2/RON, was 8.64 GW·cm−2, where RONis the on-state resistance (1.5 mΩ cm2). The on-off ratio switching from 12 to 0 V was 2.8 × 1013, while it was 2 × 1012switching from 100 V. The turn-on voltage was 1.8 V. The reverse recovery time was 42 ns, with a reverse recovery current of 34 mA.

     
    more » « less
  3. Ultrawide bandgap β-(AlxGa1−x)2O3 vertical Schottky barrier diodes on (010) β-Ga2O3 substrates are demonstrated. The β-(AlxGa1−x)2O3 epilayer has an Al composition of 21% and a nominal Si doping of 2 × 1017 cm−3 grown by molecular beam epitaxy. Pt/Ti/Au has been employed as the top Schottky contact, whereas Ti/Au has been utilized as the bottom Ohmic contact. The fabricated devices show excellent rectification with a high on/off ratio of ∼109, a turn-on voltage of 1.5 V, and an on-resistance of 3.4 mΩ cm2. Temperature-dependent forward current-voltage characteristics show effective Schottky barrier height varied from 0.91 to 1.18 eV while the ideality factor from 1.8 to 1.1 with increasing temperatures, which is ascribed to the inhomogeneity of the metal/semiconductor interface. The Schottky barrier height was considered a Gaussian distribution of potential, where the extracted mean barrier height and a standard deviation at zero bias were 1.81 and 0.18 eV, respectively. A comprehensive analysis of the device leakage was performed to identify possible leakage mechanisms by studying temperature-dependent reverse current-voltage characteristics. At reverse bias, due to the large Schottky barrier height, the contributions from thermionic emission and thermionic field emission are negligible. By fitting reverse leakage currents at different temperatures, it was identified that Poole–Frenkel emission and trap-assisted tunneling are the main leakage mechanisms at high- and low-temperature regimes, respectively. Electrons can tunnel through the Schottky barrier assisted by traps at low temperatures, while they can escape these traps at high temperatures and be transported under high electric fields. This work can serve as an important reference for the future development of ultrawide bandgap β-(AlxGa1−x)2O3 power electronics, RF electronics, and ultraviolet photonics.

     
    more » « less
  4. Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at  = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K. The spectral peaks for VB = 2.8 and 3.0 V both occur around  = 1550 nm (h = 0.75 eV), so blue-shifted relative to the peak of the “ideal”, bulk InGaAs emission spectrum shown in Fig. 1(b) [5]. These results are consistent with the model displayed in Fig. 1(c), whereby the broad emission peak is attributed to the radiative recombination between electrons accumulated on the emitter side, and holes generated on the emitter side by interband tunneling with current density Jinter. The blue-shifted main peak is attributed to the quantum-size effect on the emitter side, which creates a radiative recombination rate RN,2 comparable to the band-edge cross-gap rate RN,1. Further support for this model is provided by the shorter wavelength and weaker emission peak shown in Fig. 1(b) around = 1148 nm. Our quantum mechanical calculations attribute this to radiative recombination RR,3 in the RTD quantum well between the electron ground-state level E1,e, and the hole level E1,h. To further test the model and estimate quantum efficiencies, we conducted optical power measurements using a large-area Ge photodiode located ≈3 mm away from the RTD pinhole, and having spectral response between 800 and 1800 nm with a peak responsivity of ≈0.85 A/W at  =1550 nm. Simultaneous I-V and L-V plots were obtained and are plotted in Fig. 2(a) with positive bias on the top contact (emitter on the bottom). The I-V curve displays a pronounced NDR region having a current peak-to-valley current ratio of 10.7 (typical for In0.53Ga0.47As RTDs). The external quantum efficiency (EQE) was calculated from EQE = e∙IP/(∙IE∙h) where IP is the photodiode dc current and IE the RTD current. The plot of EQE is shown in Fig. 2(b) where we see a very rapid rise with VB, but a maximum value (at VB= 3.0 V) of only ≈2×10-5. To extract the internal quantum efficiency (IQE), we use the expression EQE= c ∙i ∙r ≡ c∙IQE where ci, and r are the optical-coupling, electrical-injection, and radiative recombination efficiencies, respectively [6]. Our separate optical calculations yield c≈3.4×10-4 (limited primarily by the small pinhole) from which we obtain the curve of IQE plotted in Fig. 2(b) (right-hand scale). The maximum value of IQE (again at VB = 3.0 V) is 6.0%. From the implicit definition of IQE in terms of i and r given above, and the fact that the recombination efficiency in In0.53Ga0.47As is likely limited by Auger scattering, this result for IQE suggests that i might be significantly high. To estimate i, we have used the experimental total current of Fig. 2(a), the Kane two-band model of interband tunneling [7] computed in conjunction with a solution to Poisson’s equation across the entire structure, and a rate-equation model of Auger recombination on the emitter side [6] assuming a free-electron density of 2×1018 cm3. We focus on the high-bias regime above VB = 2.5 V of Fig. 2(a) where most of the interband tunneling should occur in the depletion region on the collector side [Jinter,2 in Fig. 1(c)]. And because of the high-quality of the InGaAs/AlAs heterostructure (very few traps or deep levels), most of the holes should reach the emitter side by some combination of drift, diffusion, and tunneling through the valence-band double barriers (Type-I offset) between InGaAs and AlAs. The computed interband current density Jinter is shown in Fig. 3(a) along with the total current density Jtot. At the maximum Jinter (at VB=3.0 V) of 7.4×102 A/cm2, we get i = Jinter/Jtot = 0.18, which is surprisingly high considering there is no p-type doping in the device. When combined with the Auger-limited r of 0.41 and c ≈ 3.4×10-4, we find a model value of IQE = 7.4% in good agreement with experiment. This leads to the model values for EQE plotted in Fig. 2(b) - also in good agreement with experiment. Finally, we address the high Jinter and consider a possible universal nature of the light-emission mechanism. Fig. 3(b) shows the tunneling probability T according to the Kane two-band model in the three materials, In0.53Ga0.47As, GaAs, and GaN, following our observation of a similar electroluminescence mechanism in GaN/AlN RTDs (due to strong polarization field of wurtzite structures) [8]. The expression is Tinter = (2/9)∙exp[(-2 ∙Ug 2 ∙me)/(2h∙P∙E)], where Ug is the bandgap energy, P is the valence-to-conduction-band momentum matrix element, and E is the electric field. Values for the highest calculated internal E fields for the InGaAs and GaN are also shown, indicating that Tinter in those structures approaches values of ~10-5. As shown, a GaAs RTD would require an internal field of ~6×105 V/cm, which is rarely realized in standard GaAs RTDs, perhaps explaining why there have been few if any reports of room-temperature electroluminescence in the GaAs devices. [1] E.R. Brown,et al., Appl. Phys. Lett., vol. 58, 2291, 1991. [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [2] M. Feiginov et al., Appl. Phys. Lett., 99, 233506, 2011. [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [3] Y. Nishida et al., Nature Sci. Reports, 9, 18125, 2019. [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [4] P. Fakhimi, et al., 2019 DRC Conference Digest. [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). 
    more » « less
  5. Morkoç, Hadis ; Fujioka, Hiroshi ; Schwarz, Ulrich T. (Ed.)
    We report the gate leakage current and threshold voltage characteristics of Al0.3Ga0.7N/GaN heterojunction field effect transistor (HFET) with metal-organic chemical vapor deposition (MOCVD) grown β-Ga2O3 as a gate dielectric for the first time. In this study, GaN channel HFET and β-Ga2O3 passivated metal-oxide-semiconductor-HFET (MOS-HFET) structures were grown in MOCVD using N2 as carrier gas on a sapphire substrate. X-ray diffraction (XRD) and atomic force microscopy (AFM) were used to characterize the structural properties and surface morphology of the heterostructure. The electrical properties were analyzed using van der Pauw, Hall, and the mercury probe capacitance-voltage (C-V) measurement systems. The 2-dimensional electron gas (2DEG) carrier density for the heterostructure was found to be in the order of ~1013 cm-2. The threshold voltage shifted more towards the negative side for the MOSHFET. The high-low (Hi-Lo) frequency-based C-V method was used to calculate the interface charge density for the oxide-AlGaN interface and was found to be in the order of ~1012 cm2eV-1. A remarkable reduction in leakage current from 2.33×10-2 A/cm2 for HFET to 1.03×10-8 A/cm2 for MOSHFET was observed demonstrating the viability of MOCVD-grown Ga2O3 as a gate dielectric. 
    more » « less