skip to main content


Title: 7.5 kV, 6.2 GW cm−2 NiO/β-Ga2O3 vertical rectifiers with on–off ratio greater than 1013
Vertical geometry NiO/β n-Ga2O/n+ Ga2O3 heterojunction rectifiers with contact sizes from 50 to 200 μm diameter showed breakdown voltages (VB) up to 7.5 kV for drift region carrier concentration of 8 × 1015 cm−3. This exceeds the unipolar 1D limit for SiC and was achieved without substrate thinning or annealing of the epi layer structure. The power figure-of-merit, VB2/RON, was 6.2 GW cm−2, where RON is the on-state resistance (9.3–14.7 mΩ cm2). The average electric field strength was 7.56 MV/cm, approaching the maximum for β-Ga2O3. The on–off ratio switching from 5 to 0 V was 2 × 1013, while it was 3 × 1010–2 × 1011 switching to 100 V. The turn-on voltage was in the range 1.9–2.1 V for the different contact diameters, while the reverse current density was in the range 2 × 10−8–2 × 10−9 A cm−2 at −100 V. The reverse recovery time was 21 ns, while the forward current density was >100 A/cm2 at 5 V.  more » « less
Award ID(s):
1856662
NSF-PAR ID:
10409702
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Vacuum Science & Technology A
Volume:
41
Issue:
3
ISSN:
0734-2101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The effect of doping in the drift layer and the thickness and extent of extension beyond the cathode contact of a NiO bilayer in vertical NiO/β-Ga2O3 rectifiers is reported. Decreasing the drift layer doping from 8 × 1015 to 6.7 × 1015 cm−3 produced an increase in reverse breakdown voltage (VB) from 7.7 to 8.9 kV, the highest reported to date for small diameter devices (100 μm). Increasing the bottom NiO layer from 10 to 20 nm did not affect the forward current–voltage characteristics but did reduce reverse leakage current for wider guard rings and reduced the reverse recovery switching time. The NiO extension beyond the cathode metal to form guard rings had only a slight effect (∼5%) in reverse breakdown voltage. The use of NiO to form a pn heterojunction made a huge improvement in VB compared to conventional Schottky rectifiers, where the breakdown voltage was ∼1 kV. The on-state resistance (RON) was increased from 7.1 m Ω cm2 in Schottky rectifiers fabricated on the same wafer to 7.9 m Ω cm2 in heterojunctions. The maximum power figure of merit (VB)2/RON was 10.2 GW cm−2 for the 100 μm NiO/Ga2O3 devices. We also fabricated large area (1 mm2) devices on the same wafer, achieving VB of 4 kV and 4.1 A forward current. The figure-of-merit was 9 GW  cm−2 for these devices. These parameters are the highest reported for large area Ga2O3 rectifiers. Both the small area and large area devices have performance exceeding the unipolar power device performance of both SiC and GaN. 
    more » « less
  2. Large area (1 mm2) vertical NiO/βn-Ga2O/n+Ga2O3heterojunction rectifiers are demonstrated with simultaneous high breakdown voltage and large conducting currents. The devices showed breakdown voltages (VB) of 3.6 kV for a drift layer doping of 8 × 1015cm−3, with 4.8 A forward current. This performance is higher than the unipolar 1D limit for GaN, showing the promise ofβ-Ga2O3for future generations of high-power rectification devices. The breakdown voltage was a strong function of drift region carrier concentration, with VBdropping to 1.76 kV for epi layer doping of 2 × 1016cm−3. The power figure-of-merit, VB2/RON, was 8.64 GW·cm−2, where RONis the on-state resistance (1.5 mΩ cm2). The on-off ratio switching from 12 to 0 V was 2.8 × 1013, while it was 2 × 1012switching from 100 V. The turn-on voltage was 1.8 V. The reverse recovery time was 42 ns, with a reverse recovery current of 34 mA.

     
    more » « less
  3. Thin (40–150 nm), highly doped n+ (1019–1020 cm−3) Ga2O3 layers deposited using pulsed laser deposition (PLD) were incorporated into Ti/Au ohmic contacts on (001) and (010) β-Ga2O3 substrates with carrier concentrations between 2.5 and 5.1 × 1018 cm−3. Specific contact resistivity values were calculated for contact structures both without and with a PLD layer having different thicknesses up to 150 nm. With the exception of a 40 nm PLD layer on the (001) substrate, the specific contact resistivity values decreased with increasing PLD layer thickness: up to 8× on (001) Ga2O3 and up to 16× on (010) Ga2O3 compared with samples without a PLD layer. The lowest average specific contact resistivities were achieved with 150 nm PLD layers: 3.48 × 10−5 Ω cm2 on (001) Ga2O3 and 4.79 × 10−5 Ω cm2 on (010) Ga2O3. Cross-sectional transmission electron microscopy images revealed differences in the microstructure and morphology of the PLD layers on the different substrate orientations. This study describes a low-temperature process that could be used to reduce the contact resistance in Ga2O3 devices.

     
    more » « less
  4. The temperature-dependent behavior of on/off ratio and reverse recovery time in vertical heterojunction p-NiO/β n-Ga2O/n+ Ga2O3 rectifiers was investigated over the temperature range of 25–300 °C. The device characteristics in forward bias showed evidence of multiple current transport mechanisms and were found to be dependent on the applied bias voltages and temperatures. The on–off ratio decreased from 3 × 106 at 25 °C to 2.5 × 104 at 300 °C for switching to 100 V reverse bias. For 200 μm diameter rectifiers, the reverse recovery time of ∼21 ns was independent of temperature, with the Irr monotonically increasing from 15.1 mA at 25 °C to 25.6 mA at 250 °C and dropping at 300 °C. The dI/dt increased from 4.2 to 4.6 A/μs over this temperature range. The turn-on voltage decreased from 2.9 V at 25 °C to 1.7 V at 300 °C. The temperature coefficient of breakdown voltage was negative and does not support the presence of avalanche breakdown in NiO/β-Ga2O3 rectifiers. The energy loss during switching from 100 V was in the range 23–31 μJ over the temperature range investigated.

     
    more » « less
  5. NiO/β-(Al x Ga 1− x ) 2 O 3 /Ga 2 O 3 heterojunction lateral geometry rectifiers with diameter 50–100  μm exhibited maximum reverse breakdown voltages >7 kV, showing the advantage of increasing the bandgap using the β-(Al x Ga 1− x ) 2 O 3 alloy. This Si-doped alloy layer was grown by metal organic chemical vapor deposition with an Al composition of ∼21%. On-state resistances were in the range of 50–2180 Ω cm 2 , leading to power figures-of-merit up to 0.72 MW cm −2 . The forward turn-on voltage was in the range of 2.3–2.5 V, with maximum on/off ratios >700 when switching from 5 V forward to reverse biases up to −100 V. Transmission line measurements showed the specific contact resistance was 0.12 Ω cm 2 . The breakdown voltage is among the highest reported for any lateral geometry Ga 2 O 3 -based rectifier. 
    more » « less