skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MuSE: a Multimodal Dataset of Stressed Emotion
Endowing automated agents with the ability to provide support, entertainment and interaction with human beings requires sensing of the users’ affective state. These affective states are impacted by a combination of emotion inducers, current psychological state, and various conversational factors. Although emotion classification in both singular and dyadic settings is an established area, the effects of these additional factors on the production and perception of emotion is understudied. This paper presents a new dataset, Multimodal Stressed Emotion (MuSE), to study the multimodal interplay between the presence of stress and expressions of affect. We describe the data collection protocol, the possible areas of use, and the annotations for the emotional content of the recordings. The paper also presents several baselines to measure the performance of multimodal features for emotion and stress classification.  more » « less
Award ID(s):
1651740
PAR ID:
10409743
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the Twelfth Language Resources and Evaluation Conference
Page Range / eLocation ID:
1499–1510
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recognizing the affective state of children with autism spectrum disorder (ASD) in real-world settings poses challenges due to the varying head poses, illumination levels, occlusion and a lack of datasets annotated with emotions in in-the-wild scenarios. Understanding the emotional state of children with ASD is crucial for providing personalized interventions and support. Existing methods often rely on controlled lab environments, limiting their applicability to real-world scenarios. Hence, a framework that enables the recognition of affective states in children with ASD in uncontrolled settings is needed. This paper presents a framework for recognizing the affective state of children with ASD in an in-the-wild setting using heart rate (HR) information. More specifically, an algorithm is developed that can classify a participant’s emotion as positive, negative, or neutral by analyzing the heart rate signal acquired from a smartwatch. The heart rate data are obtained in real time using a smartwatch application while the child learns to code a robot and interacts with an avatar. The avatar assists the child in developing communication skills and programming the robot. In this paper, we also present a semi-automated annotation technique based on facial expression recognition for the heart rate data. The HR signal is analyzed to extract features that capture the emotional state of the child. Additionally, in this paper, the performance of a raw HR-signal-based emotion classification algorithm is compared with a classification approach based on features extracted from HR signals using discrete wavelet transform (DWT). The experimental results demonstrate that the proposed method achieves comparable performance to state-of-the-art HR-based emotion recognition techniques, despite being conducted in an uncontrolled setting rather than a controlled lab environment. The framework presented in this paper contributes to the real-world affect analysis of children with ASD using HR information. By enabling emotion recognition in uncontrolled settings, this approach has the potential to improve the monitoring and understanding of the emotional well-being of children with ASD in their daily lives. 
    more » « less
  2. The rapid expansion of social media platforms has provided unprecedented access to massive amounts of multimodal user-generated content. Comprehending user emotions can provide valuable insights for improving communication and understanding of human behaviors. Despite significant advancements in Affective Computing, the diverse factors influencing user emotions in social networks remain relatively understudied. Moreover, there is a notable lack of deep learning-based methods for predicting user emotions in social networks, which could be addressed by leveraging the extensive multimodal data available. This work presents a novel formulation of personalized emotion prediction in social networks based on heterogeneous graph learning. Building upon this formulation, we design HMG-Emo, a Heterogeneous Multimodal Graph Learning Framework that utilizes deep learning-based features for user emotion recognition. Additionally, we include a dynamic context fusion module in HMG-Emo that is capable of adaptively integrating the different modalities in social media data. Through extensive experiments, we demonstrate the effectiveness of HMG-Emo and verify the superiority of adopting a graph neural network-based approach, which outperforms existing baselines that use rich hand-crafted features. To the best of our knowledge, HMG-Emo is the first multimodal and deep-learning-based approach to predict personalized emotions within online social networks. Our work highlights the significance of exploiting advanced deep learning techniques for less-explored problems in Affective Computing. 
    more » « less
  3. null (Ed.)
    The paper reports progress on an NSF-funded project whose goal is to research and develop multimodal affective animated pedagogical agents (APA) for different types of learners. Although the preponderance of research on APA tends to focus on the cognitive aspects of online learning, this project explores the less-studied role of affective features. More specifically, the objectives of the work are to: (1) research and develop novel algorithms for emotion recognition and for life-like emotion representation in embodied agents, which will be integrated in a new system for creating APA to be embedded in digital lessons; and (2) develop an empirically grounded research base that will guide the design of affective APA that are effective for different types of learners. This involves conducting a series of experiments to determine the effects of the agent’s emotional style and emotional intelligence on a diverse population of students. The paper outlines the work conducted so far, e.g., development of a new system (and underlying algorithms) for producing affective APA. It also reports the findings from two preliminary studies. 
    more » « less
  4. Agents must monitor their partners' affective states continuously in order to understand and engage in social interactions. However, methods for evaluating affect recognition do not account for changes in classification performance that may occur during occlusions or transitions between affective states. This paper addresses temporal patterns in affect classification performance in the context of an infant-robot interaction, where infants’ affective states contribute to their ability to participate in a therapeutic leg movement activity. To support robustness to facial occlusions in video recordings, we trained infant affect recognition classifiers using both facial and body features. Next, we conducted an in-depth analysis of our best-performing models to evaluate how performance changed over time as the models encountered missing data and changing infant affect. During time windows when features were extracted with high confidence, a unimodal model trained on facial features achieved the same optimal performance as multimodal models trained on both facial and body features. However, multimodal models outperformed unimodal models when evaluated on the entire dataset. Additionally, model performance was weakest when predicting an affective state transition and improved after multiple predictions of the same affective state. These findings emphasize the benefits of incorporating body features in continuous affect recognition for infants. Our work highlights the importance of evaluating variability in model performance both over time and in the presence of missing data when applying affect recognition to social interactions. 
    more » « less
  5. The incorporation of technology into primary and secondary education has facilitated the creation of curricula that utilize computational tools for problem-solving. In Open-Ended Learning Environments (OELEs), students participate in learning-by- modeling activities that enhance their understanding of (Science, technology, engineering, and mathematics) STEM and computational concepts. This research presents an innovative multimodal emotion recognition approach that analyzes facial expressions and speech data to identify pertinent learning-centered emotions, such as engagement, delight, confusion, frustration, and boredom. Utilizing sophisticated machine learning algorithms, including High-Speed Face Emotion Recognition (HSEmotion) model for visual data and wav2vec 2.0 for auditory data, our method is refined with a modality verification step and a fusion layer for accurate emotion classification. The multimodal technique significantly increases emotion detection accuracy, with an overall accuracy of 87%, and an Fl -score of 84%. The study also correlates these emotions with model building strategies in collaborative settings, with statistical analyses indicating distinct emotional patterns associated with effective and ineffective strategy use for tasks model construction and debugging tasks. These findings underscore the role of adaptive learning environments in fostering students' emotional and cognitive development. 
    more » « less