skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experience vs. Academic Rank: Leadership Growth over Multiple Semesters in Vertically Integrated Project (VIP) Courses
This innovative-practice work-in-progress paper explores student leadership development over multiple semesters in team-structured project-based courses. While student growth is expected in a single semester, the study asks if multiple semesters of participation lead to continued leadership growth, and if so, over how many semesters of participation growth continues. The study examined peer evaluation ratings in general leadership (coordination of teams’ work) and technical leadership (serving as a technical/content area leader) in a single semester of Georgia Tech’s Vertically Integrated Projects (VIP) Program, a multidisciplinary, multi-semester, team-structured, projectbased, and credit-bearing program in which student teams support faculty research. Analysis examined means and distributions on two peer evaluation questions (N = 1,073 and N = 1,047) by student academic rank and number of semesters of participation in the program. Findings indicate that within their teams, students’ leadership increased through the third semester, with students making their greatest leadership contributions in the third semester and beyond; and students of lower academic rank provided as much leadership (including technical leadership) as older students who had comparable experience on the team. Both the VIP model and the operationalization of leadership represent innovative practices, because the VIP model yields measurable gains in student leadership, and the measurement of student leadership is based on peer-evaluations instead of self-assessments. The educational model and research in this paper are aligned with the FIE values of encouraging mentorship and professional growth, appreciating multidisciplinary approaches, valuing new approaches, and generating new knowledge. The paper addresses limitations and next steps for the study.  more » « less
Award ID(s):
2013545
PAR ID:
10409777
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2022 IEEE Frontiers in Education Conference (FIE)
Volume:
NA
Issue:
NA
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Challenge or problem-based learning help students develop deeper content understanding and enhanced STEM skillsets and provide opportunities for learning across multiple contexts. Educational interventions that include active learning, mentoring, and role modeling are particularly important in recruiting and retaining female and minority students in STEM. With this framework in mind, we implemented the Vertically-Integrated Projects (VIP) model at a public urban research university in the 2022-2023 academic year with the goal of helping participating students increase engineering and STEM identity and other psychosocial outcomes. This paper reports the results from the first year of our VIP program. At the beginning and end of the academic year, participants completed measures of engineering identity; engineering self-efficacy; engineering mindset; intention to remain in the engineering major; intention to have a career in engineering; and STEM professional identity. Wilcoxon Signed Ranks (N=10) tests showed no statistically significant differences on any of these measures. Participants also responded to 20 items assessing their perceptions of their level of knowledge and skills in a variety of areas relevant to their experience in the VIP program. Wilcoxon Signed Ranks tests (N=10) revealed some statistically significant differences between pre- and post-test. Specifically, students tended to see themselves as having greater knowledge or skills in planning a long-term project, communicating technical concepts and designs to others, designing systems, components, or processes to meet practical or applied needs, understanding computer hardware and systems, working on a multidisciplinary team, and making ethical decisions in engineering/research. Finally, at the end of the Spring semester, participants rated the extent to which they perceived the VIP program helped them to develop their skills on the same 20 items. Most participants believed the VIP program helped them to develop each skill either somewhat or a great deal. Overall, while participation in the VIP program did not influence student engineering identity, self-efficacy, mindset, or major/career intentions, it was associated with increased self-perceived abilities on six specific skills. Additionally, most participants agreed that the VIP program helped them develop 20 skills at least “somewhat.” 
    more » « less
  2. Underproduction, low retention, and lack of diversity in STEM disciplines, especially engineering, are significant challenges nationally, but are particularly acute in regions, both urban and rural, where educational access is limited. Leveraging our institutional location at a public urban research university in a city marked by its connection to its rural surroundings, we seek to address these challenges by implementing the Vertically Integrated Projects (VIP) model at our university with the support of an NSF IUSE grant. The VIP model is based on active learning and enables tiered mentoring from students at all academic years, thereby providing the opportunity of role modeling from upper-level undergraduate and graduate students as well as faculty. In addition, programs based on the VIP model are accessible to all students (not just high performing students) and provide a meaningful networking environment. We use our implementation of the VIP model to foster STEM identity growth and a sense of belonging, while increasing and celebrating diversity in engineering and other STEM disciplines. Our VIP program leverages best practices from the well-established VIP model and adapts it to address unique aspects of our university’s community and interests. Specifically, the program includes freshmen and will also serve as a recruitment tool for local community college students. It employs a tiered mentoring approach and activities that prepare students for research and foster networking. The long-term goal of the VIP experience is to create a research culture and community in engineering and eventually across STEM disciplines that is inclusive and supportive of students from diverse backgrounds. An additional focus is to showcase the value of diversity in research and innovation through the program. Both the research culture and increased acknowledgement of the value of diversity are designed to enhance students’ STEM identity, which is important for retention in the major and career. The purpose of this paper is to report on the planning and launch of our VIP program in Fall 2022, focusing on the PIs’ experiences implementing the program and on our first cohort’s (N = 12; 7 women; 4 Black/African American; 2 Hispanic) experiences participating in the program during their first semester. Specifically, this paper will describe the challenges and opportunities of implementing the VIP program and how the VIP model has been adapted to align with unique aspects of our institution and student body. We will also report preliminary analyses of student journal data collected from the first cohort throughout the Fall semester, where students described their initial expectations/hopes and concerns for the semester; their activities and emotional responses during the semester; and finally, their reflections on their experiences, positive or negative, throughout the semester. The paper will conclude by offering lessons learned from the first year of this project as well as directions for moving forward. 
    more » « less
  3. Increasing academic participation among students from ethnic-racial underrepresented groups in STEM yields societal benefits including ameliorating economic ramifications of the labor shortages in STEM, improving scientific innovation, and providing opportunity, access, and participation in high-status STEM fields. Two longitudinal studies with students from underrepresented groups investigated the role of active learning interventions in the development of STEM self-efficacy and intentions to pursue STEM in the future. Study 1 longitudinally tracked high school students participating in a 4-week geoscience program that applied active learning techniques ranging from hands on experiments to peer discussion. High school student participants displayed increases in self-efficacy and STEM intentions from the start to completion of the program, an effect that was observed exclusively among those who reported strong program quality. Study 2 examined the role of mentorship effectiveness with a sample of community college STEM students interested in transferring to a 4-year college. Students’ relatively strong self-efficacy and STEM intentions at the start of the semester remained stable through the end of the semester. Altogether, the present research highlights the role of positive, inclusive educational climates in promoting STEM success among students from underrepresented group members. 
    more » « less
  4. Games and competitions enhance student engagement and help improve hands-on learning of computing concepts. Focusing on targeted goals, competitions provide a sense of community and accomplishment among students, fostering peer-learning opportunities. Despite these benefits of motivating and enhancing student learning, the impact of competitions on curricular learning outcomes has not been sufficiently studied. For institutional or program accreditation, understanding the extent to which students achieve course or program learning outcomes is essential, and helps in establishing continuous improvement processes for the program curriculum. Utilizing the Collegiate Cyber Defense Competition (CCDC), a curricular assessment was conducted for an undergraduate cybersecurity program at a US institution. This archetypal competition was selected as it provides an effective platform for broader program learning outcomes, as students need to: (1) function in a team and communicate effectively (teamwork and communication skills); (2) articulate technical information to non-technical audiences (communication skills); (3) apply excellent technical and non-technical knowledge (design and analysis skills applied to problems-solving); and (4) function well under adversity (real-world problem-solving skills). Using data for both students who competed and who did not, student progress was tracked over five years. Preliminary analysis showed that these competitions made marginally-interested students become deeply engaged with the curriculum; broadened participation among women who became vital to team success by showcasing their technical and management skills; and pushed students to become self-driven, improving their academic performance and career placements. This experience report also reflects on what was learned and outlines the next steps for this work. 
    more » « less
  5. Games and competitions enhance student engagement and help improve hands-on learning of computing concepts. Focusing on targeted goals, competitions provide a sense of community and accomplishment among students, fostering peer-learning opportunities. Despite these benefits of motivating and enhancing student learning, the impact of competitions on curricular learning outcomes has not been sufficiently studied. For institutional or program accreditation, understanding the extent to which students achieve course or program learning outcomes is essential, and helps in establishing continuous improvement processes for the program curriculum. Utilizing the Collegiate Cyber Defense Competition (CCDC), a curricular assessment was conducted for an undergraduate cybersecurity program at a US institution. This archetypal competition was selected as it provides an effective platform for broader program learning outcomes, as students need to: (1) function in a team and communicate effectively (teamwork and communication skills); (2) articulate technical information to non-technical audiences (communication skills); (3) apply excellent technical and non-technical knowledge (design and analysis skills applied to problem-solving); and (4) function well under adversity (real-world problem-solving skills). Using data for both students who competed and who did not, student progress was tracked over five years. Preliminary analysis showed that these competitions made marginally-interested students become deeply engaged with the curriculum; broadened participation among women who became vital to team success by showcasing their technical and management skills; and pushed students to become self-driven, improving their academic performance and career placements. This experience report also reflects on what was learned and outlines the next steps for this work. 
    more » « less