skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: DNA conformational equilibrium enables continuous changing of curvatures
Assembly of complex structures from a small set of tiles is a common theme in biology. For example, many copies of identical proteins make up polyhedron-shaped, viral capsids and tubulin can make long microtubules. This inspired the development of tile-based DNA self-assembly for nanoconstruction, particularly for structures with high symmetries. In the final structure, each type of motif will adopt the same conformation, either rigid or with defined flexibility. For structures that have no symmetry, their assembly remains a challenge from a small set of tiles. To meet this challenge, algorithmic self-assembly has been explored driven by computational science, but it is not clear how to implement this approach to one-dimensional (1D) structures. Here, we have demonstrated that a constant shift of a conformational equilibrium could allow 1D structures to evolve. As shown by atomic force microscopy imaging, one type of DNA tile successfully assembled into DNA spirals and concentric circles, which became less and less curved from the structure's center outward. This work points to a new direction for tile-based DNA assembly.  more » « less
Award ID(s):
2107393
PAR ID:
10409783
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
15
Issue:
2
ISSN:
2040-3364
Page Range / eLocation ID:
470 to 475
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Surface-assisted, tile-based DNA self-assembly is a powerful method to construct large, two-dimensional (2D) nanoarrays. To further increase the structural complexity, one idea is to incorporate different types of tiles into one assembly system. However, different tiles have different adsorption strengths to the solid surface. The differential adsorptions make it difficult to control the effective molar ratio between different DNA tile concentrations on the solid surface, leading to assembly failure. Herein, we propose a solution to this problem by engineering the tiles with comparable molecular weights while maintaining their architectures. As a demonstration, we have applied this strategy to successfully assemble binary DNA 2D arrays out of very different tiles. We expect that this strategy would facilitate assembly of other complicated nanostructures as well. 
    more » « less
  2. Abstract

    Tile‐based DNA self‐assembly is a powerful approach for nano‐constructions. In this approach, individual DNA single strands first assemble into well‐defined structural tiles, which, then, further associate with each other into final nanostructures. It is a general assumption that the lower‐level structures (tiles) determine the higher‐level, final structures. In this study, we present concrete experimental data to show that higher‐level structures could, at least in the current example, also impact on the formation of lower‐level structures. This study prompts questions such as: how general is this phenomenon in programmed DNA self‐assembly and can we turn it into a useful tool for fine tuning DNA self‐assembly?

     
    more » « less
  3. Inspired by nature and motivated by a lack of top-down tools for precise nanoscale manufacture, self-assembly is a bottom-up process where simple, unorganized components autonomously combine to form larger more complex structures. Such systems hide rich algorithmic properties - notably, Turing universality - and a self-assembly system can be seen as both the object to be manufactured as well as the machine controlling the manufacturing process. Thus, a benchmark problem in self-assembly is the unique assembly of shapes: to design a set of simple agents which, based on aggregation rules and random movement, self-assemble into a particular shape and nothing else. We use a popular model of self-assembly, the 2-handed or hierarchical tile assembly model, and allow the existence of repulsive forces, which is a well-studied variant. The technique utilizes a finely-tuned temperature (the minimum required affinity required for aggregation of separate complexes). We show that calibrating the temperature and the strength of the aggregation between the tiles, one can encode the shape to be assembled without increasing the number of distinct tile types. Precisely, we show one tile set for which the following holds: for any finite connected shape S, there exists a setting of binding strengths between tiles and a temperature under which the system uniquely assembles S at some scale factor. Our tile system only uses one repulsive glue type and the system is growth-only (it produces no unstable assemblies). The best previous unique shape assembly results in tile assembly models use O(K(S)/(log K(S))) distinct tile types, where K(S) is the Kolmogorov (descriptional) complexity of the shape S. 
    more » « less
  4. Abstract

    Modular DNA tile‐based self‐assembly is a versatile way to engineer basic tessellation patterns on the nanometer scale, but it remains challenging to achieve high levels of structural complexity. We introduce a set of general design principles to create intricate DNA tessellations by employing multi‐arm DNA motifs with low symmetry. We achieved two novel Archimedean tiling patterns, (4.8.8) and (3.6.3.6), and one pattern with higher‐order structures beyond the complexity observed in Archimedean tiling. Our success in assembling complicated DNA tessellations demonstrates the broad design space of DNA structural motifs, enriching the toolbox of DNA tile‐based self‐assembly and expanding the complexity boundaries of DNA tile‐based tessellation.

     
    more » « less
  5. Abstract

    In this paper we present a model containing modifications to the Signal-passing Tile Assembly Model (STAM), a tile-based self-assembly model whose tiles are capable of activating and deactivating glues based on the binding of other glues. These modifications consist of an extension to 3D, the ability of tiles to form “flexible” bonds that allow bound tiles to rotate relative to each other, and allowing tiles of multiple shapes within the same system. We call this new model the STAM*, and we present a series of constructions within it that are capable of self-replicating behavior. Namely, the input seed assemblies to our STAM* systems can encode either “genomes” specifying the instructions for building a target shape, or can be copies of the target shape with instructions built in. A universal tile set exists for any target shape (at scale factor 2), and from a genome assembly creates infinite copies of the genome as well as the target shape. An input target structure, on the other hand, can be “deconstructed” by the universal tile set to form a genome encoding it, which will then replicate and also initiate the growth of copies of assemblies of the target shape. Since the lengths of the genomes for these constructions are proportional to the number of points in the target shape, we also present a replicator which utilizes hierarchical self-assembly to greatly reduce the size of the genomes required. The main goals of this work are to examine minimal requirements of self-assembling systems capable of self-replicating behavior, with the aim of better understanding self-replication in nature as well as understanding the complexity of mimicking it.

     
    more » « less