Assembly of complex structures from a small set of tiles is a common theme in biology. For example, many copies of identical proteins make up polyhedron-shaped, viral capsids and tubulin can make long microtubules. This inspired the development of tile-based DNA self-assembly for nanoconstruction, particularly for structures with high symmetries. In the final structure, each type of motif will adopt the same conformation, either rigid or with defined flexibility. For structures that have no symmetry, their assembly remains a challenge from a small set of tiles. To meet this challenge, algorithmic self-assembly has been explored driven by computational science, but it is not clear how to implement this approach to one-dimensional (1D) structures. Here, we have demonstrated that a constant shift of a conformational equilibrium could allow 1D structures to evolve. As shown by atomic force microscopy imaging, one type of DNA tile successfully assembled into DNA spirals and concentric circles, which became less and less curved from the structure's center outward. This work points to a new direction for tile-based DNA assembly.
more »
« less
Surface-assisted self-assembly of 2D, DNA binary crystals
Surface-assisted, tile-based DNA self-assembly is a powerful method to construct large, two-dimensional (2D) nanoarrays. To further increase the structural complexity, one idea is to incorporate different types of tiles into one assembly system. However, different tiles have different adsorption strengths to the solid surface. The differential adsorptions make it difficult to control the effective molar ratio between different DNA tile concentrations on the solid surface, leading to assembly failure. Herein, we propose a solution to this problem by engineering the tiles with comparable molecular weights while maintaining their architectures. As a demonstration, we have applied this strategy to successfully assemble binary DNA 2D arrays out of very different tiles. We expect that this strategy would facilitate assembly of other complicated nanostructures as well.
more »
« less
- PAR ID:
- 10441731
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 15
- Issue:
- 23
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 9941 to 9945
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Seki, Shinnosuke; Stewart, Jaimie Marie (Ed.)The abstract Tile Assembly Model (aTAM) provides an excellent foundation for the mathematical study of DNA-tile-based self-assembling systems, especially those wherein logic is embedded within the designs of the tiles so that they follow prescribed algorithms. While such algorithmic self-assembling systems are theoretically powerful, being computationally universal and capable of building complex shapes using information-theoretically optimal numbers of tiles, physical DNA-based implementations of these systems still encounter formidable error rates and undesired nucleation that hinder this theoretical potential. Slat-based self-assembly is a recent development wherein DNA forms long slats that combine together in 2 layers, rather than square tiles in a plane. In this approach, the length of the slats is key; while tiles typically only bind to 2 neighboring tiles at a time, slats may bind to dozens of other slats. This increased coordination between slats means that several mismatched slats must coincidentally meet in just the right way for errors to persist, unlike tiles where only a few are required. Consequently, while still a novel technology, large slat-based DNA constructions have been successfully implemented in the lab with resilience to many tile-based construction problems. These improved error characteristics come at a cost however, as slat-based systems are often more difficult to design and simulate than tile-based ones. Moreover, it has not been clear whether slats, with their larger sizes and different geometries, have the same theoretical capabilities as tiles. In this paper, we show that slats are capable of doing anything that tiles can, at least at scale. We demonstrate that any aTAM system may be converted to and simulated by an effectively equivalent system of slats. Furthermore, we show that these simulating slat systems can be made more efficiently, using shorter slats and a smaller scale factor, if the simulated tile system avoids certain uncommon growth patterns. Specifically, we consider 5 classes of aTAM systems with increasing complexity, from zig-zag systems which grow in a rigid pattern to the full class of all aTAM systems, and show how they may be converted to equivalent slat systems. We show that the simplest class may be simulated by slats at only a 2c × 2c scale, where c is the freely chosen coordination number of the slats, and further show that the full class of aTAM systems can be simulated at only a 5c × 5c scale. These results prove that slats have the full theoretical power of aTAM tiles while also providing constructions that are compact enough for potential DNA-based implementations of slat systems that are both capable of powerful algorithmic self-assembly and possessing of the strong error resilience of slats.more » « less
-
Abstract Tile‐based DNA self‐assembly is a powerful approach for nano‐constructions. In this approach, individual DNA single strands first assemble into well‐defined structural tiles, which, then, further associate with each other into final nanostructures. It is a general assumption that the lower‐level structures (tiles) determine the higher‐level, final structures. In this study, we present concrete experimental data to show that higher‐level structures could, at least in the current example, also impact on the formation of lower‐level structures. This study prompts questions such as: how general is this phenomenon in programmed DNA self‐assembly and can we turn it into a useful tool for fine tuning DNA self‐assembly?more » « less
-
Topologically Interlocked Material systems are a class of architectured materials. TIM systems are assembled from individual building blocks and are confined by an external frame. In particular, 2D, plate-type assemblies are considered. This publication contains files for the numerical analysis of the mechanical behavior of TIM systems through the use of finite element analysis. ABAQUS model files (inp format) for the study of the chiral/achiral response are provided. Files chirality_s1_in.inp are for type I square assemblies. n=3,5,7,9 Files chirality_s2_in.inp are for type II square assemblies. n=4,6,8,10 Files chirality_h1_in.inp are for type I hexagon assemblies. n=2,3,4,5 Files chirality_h2_in.inp are for type II hexagon assemblies. n=2,3,4,5 File chirality_s1i5_center_dissection.inp is for an assembly with a dissection of the central tile of type I square assembly with n=5. File chirality_s2i6_center_dissection.inp is for an assembly with a dissection of the central tile of type II square assembly with n=6. File chirality_s1i5_center_surrounding_dissection.inp is for an assembly with dissections of the tiles surrounding the center tile of type I square assembly with n=5. File chirality_h1i3_center_dissection.inp is for an assembly with a dissection of the central tile of type I hexagon assembly with n=3. File chirality_h2i3_center_dissection.inp is for an assembly with a dissection of the central tile of type II hexagon assembly with n=3. File chirality_h1i3_center_surrounding_dissection.inp is for an assembly with dissections of the tiles surrounding the center tile of type I hexagon assembly with n=3.more » « less
-
Living cells regulate the dynamics of developmental events through interconnected signaling systems that activate and deactivate inert precursors. This suggests that similarly, synthetic biomaterials could be designed to develop over time by using chemical reaction networks to regulate the availability of assembling components. Here we demonstrate how the sequential activation or deactivation of distinct DNA building blocks can be modularly coordinated to form distinct populations of self-assembling polymers using a transcriptional signaling cascade of synthetic genes. Our building blocks are DNA tiles that polymerize into nanotubes, and whose assembly can be controlled by RNA molecules produced by synthetic genes that target the tile interaction domains. To achieve different RNA production rates, we use a strategy based on promoter “nicking” and strand displacement. By changing the way the genes are cascaded and the RNA levels, we demonstrate that we can obtain spatially and temporally different outcomes in nanotube assembly, including random DNA polymers, block polymers, and as well as distinct autonomous formation and dissolution of distinct polymer populations. Our work demonstrates a way to construct autonomous supramolecular materials whose properties depend on the timing of molecular instructions for self-assembly, and can be immediately extended to a variety of other nucleic acid circuits and assemblies.more » « less
An official website of the United States government

