J191213.72 − 441045.1 is a binary system composed of a white dwarf and an M-dwarf in a 4.03-h orbit. It shows emission in radio, optical, and X-ray, all modulated at the white dwarf spin period of 5.3 min, as well as various orbital sideband frequencies. Like in the prototype of the class of radio-pulsing white dwarfs, AR Scorpii, the observed pulsed emission seems to be driven by the binary interaction. In this work, we present an analysis of far-ultraviolet spectra obtained with the Cosmic Origins Spectrograph at the Hubble Space Telescope, in which we directly detect the white dwarf in J191213.72 − 441045.1. We find that the white dwarf has a temperature of Teff = 11485 ± 90 K and mass of 0.59 ± 0.05 M⊙. We place a tentative upper limit on the magnetic field of ≈50 MG. If the white dwarf is in thermal equilibrium, its physical parameters would imply that crystallization has not started in the core of the white dwarf. Alternatively, the effective temperature could have been affected by compressional heating, indicating a past phase of accretion. The relatively low upper limit to the magnetic field and potential lack of crystallization that could generate a strong field pose challenges to pulsar-like models for the system and give preference to propeller models with a low magnetic field. We also develop a geometric model of the binary interaction which explains many salient features of the system.
CSS1603+19 is a cataclysmic variable (CV) with an orbital period of 81.96 min, near the minimal period of CVs. It is unusual in having a strong mid-infrared excess inconsistent with thermal emission from a brown dwarf companion. Here, we present time-resolved multiwavelength observations of this system. WISE photometry indicates that the mid-infrared excess displays a one-magnitude eclipsing-like variability during the orbit. We obtained near-infrared and optical spectroscopy using Gemini, MDM, and APO telescopes. Near-infrared spectra show possible cyclotron features indicating that the white dwarf has a magnetic field of about 5 MG. Optical and near-infrared spectra display double-peaked emission lines, with both components showing strong radial velocity variations during the orbital period and with the broad component leading the narrow component stably by about 0.2 of the orbital phase. We construct a physical model informed by existing observations of the system and determine that one component likely originates from the accretion column on to the magnetized white dwarf in synchronous rotation with the orbital motion and the other from the Roche overflow point. This allows us to constrain the masses of the binary components to be M1 > 0.24 M⊙ for the white dwarf accretor and M2 = 0.0644 ± 0.0074 M⊙ for the donor. We classify the system as an AM Herculis star, or a polar. It has likely completed its stint on the period gap, but has not yet gone through the period bounce.
more » « less- PAR ID:
- 10409865
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 522
- Issue:
- 2
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 2719-2731
- Size(s):
- p. 2719-2731
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
null (Ed.)ABSTRACT We present high-resolution spectroscopy of two nearby white dwarfs with inconsistent spectroscopic and parallax distances. The first one, PG 1632+177, is a 13th magnitude white dwarf only 25.6 pc away. Previous spectroscopic observations failed to detect any radial velocity changes in this star. Here, we show that PG 1632+177 is a 2.05-d period double-lined spectroscopic binary (SB2) containing a low-mass He-core white dwarf with a more-massive, likely CO-core white dwarf companion. After L 870−2, PG 1632+177 becomes the second closest SB2 white dwarf currently known. Our second target, WD 1534+503, is also an SB2 system with an orbital period of 0.71 d. For each system, we constrain the atmospheric parameters of both components through a composite model-atmosphere analysis. We also present a new set of non-local thermodynamic equilibrium (NLTE) synthetic spectra appropriate for modelling high-resolution observations of cool white dwarfs, and show that NLTE effects in the core of the H α line increase with decreasing effective temperature. We discuss the orbital period and mass distribution of SB2 and eclipsing double white dwarfs with orbital constraints, and demonstrate that the observed population is consistent with the predicted period distribution from the binary population synthesis models. The latter predict more massive CO + CO white dwarf binaries at short (<1 d) periods, as well as binaries with several day orbital periods; such systems are still waiting to be discovered in large numbers.more » « less
-
ABSTRACT Radio emission has been detected from tens of white dwarfs, in particular in accreting systems. Additionally, radio emission has been predicted as a possible outcome of a planetary system around a white dwarf. We searched for 3 GHz radio continuum emission in 846 000 candidate white dwarfs previously identified in Gaia using the Very Large Array Sky Survey (VLASS) Epoch 1 Quick Look Catalogue. We identified 13 candidate white dwarfs with a counterpart in VLASS within 2 arcsec. Five of those were found not to be white dwarfs in follow-up or archival spectroscopy, whereas seven others were found to be chance alignments with a background source in higher resolution optical or radio images. The remaining source, WDJ204259.71+152108.06, is found to be a white dwarf and M-dwarf binary with an orbital period of 4.1 d and long-term stochastic optical variability, as well as luminous radio and X-ray emission. For this binary, we find no direct evidence of a background contaminant, and a chance alignment probability of only ≈2 per cent. However, other evidence points to the possibility of an unfortunate chance alignment with a background radio and X-ray emitting quasar, including an unusually poor Gaia DR3 astrometric solution for this source. With at most one possible radio emitting white dwarf found, we conclude that strong (≳1–3 mJy) radio emission from white dwarfs in the 3 GHz band is virtually non-existent outside of interacting binaries.
-
ABSTRACT We present here 55 short-period post-common envelope binaries (PCEBs) containing a hot white dwarf (WD) and a low-mass main sequence (MS). Based on the photometric data from Zwicky Transient Facility survey data Release 19 (ZTF DR19), the light curves are analysed for about 200 WDMS binaries with emission line(s) identified from the Sloan Digital Sky Survey (SDSS) or the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) spectra, in which 55 WDMS binaries are found to exhibit variability in their luminosities with a short period and are thus short-period binaries (i.e. PCEBs). In addition, it is found that the orbital periods of these PCEBs locate in a range from 2.2643 to 81.1526 h. However, only six short-period PCEBs are newly discovered and the orbital periods of 19 PCEBs are improved in this work. Meanwhile, it is found that three objects are newly discovered eclipsing PCEBs, and a object (i.e. SDSS J1541) might be the short-period PCEB with a late M-type star or a brown dwarf companion based on the analysis of its spectral energy distribution. At last, the mechanism(s) being responsible for the emission features in the spectra of these PCEBs are discussed, the emission features arising in their optical spectra might be caused by the stellar activity or an irradiated component owing to a hot WD companion because most of them contain a WD with an effective temperature higher than $\sim$10 000 K.
-
Abstract We report the discovery of ZTF J0127+5258, a compact mass-transferring binary with an orbital period of 13.7 minutes. The system contains a white dwarf accretor, which likely originated as a post–common envelope carbon–oxygen (CO) white dwarf, and a warm donor (
T eff,donor= 16,400 ± 1000 K). The donor probably formed during a common envelope phase between the CO white dwarf and an evolving giant that left behind a helium star or white dwarf in a close orbit with the CO white dwarf. We measure gravitational wave–driven orbital inspiral with ∼51σ significance, which yields a joint constraint on the component masses and mass transfer rate. While the accretion disk in the system is dominated by ionized helium emission, the donor exhibits a mixture of hydrogen and helium absorption lines. Phase-resolved spectroscopy yields a donor radial velocity semiamplitude of 771 ± 27 km s−1, and high-speed photometry reveals that the system is eclipsing. We detect a Chandra X-ray counterpart withL X∼ 3 × 1031erg s−1. Depending on the mass transfer rate, the system will likely either evolve into a stably mass-transferring helium cataclysmic variable, merge to become an R CrB star, or explode as a Type Ia supernova in the next million years. We predict that the Laser Space Interferometer Antenna (LISA) will detect the source with a signal-to-noise ratio of 24 ± 6 after 4 yr of observations. The system is the first LISA-loud mass-transferring binary with an intrinsically luminous donor, a class of sources that provide the opportunity to leverage the synergy between optical and infrared time domain surveys, X-ray facilities, and gravitational-wave observatories to probe general relativity, accretion physics, and binary evolution.