skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy efficient integrated MEMS neural network for simultaneous sensing and computing
Abstract Biological systems seamlessly combine multiple functions in lightweight and energy-efficient structures. Such capability in synthetic structures would be desirable in numerous engineering applications such as aerospace, robotics and wearable devices. Here we report an integrated silicon-based structure configured to sense, perform different classification algorithms, and produce an action signal within the same physical layer. The algorithms are coded in the mechanical responses of the sensing elements of multiple coupled micro-electro-mechanical systems (MEMS), simultaneously capturing acceleration measurements to produce an actuated signal. This all-in-one structure operates with zero circuitry and low power consumption. As a demonstration, we designed and fabricated a network of three MEMS neurons to successfully perform both simple signal classification and activity recognition problems (standing and sitting) with only 9.92 × 10−17kWh and 17.79 × 10−19kWh energy consumption per operation, respectively. Our approach will enable emergent technologies, such as wearable devices, to perform complex computations with power from a single battery charge.  more » « less
Award ID(s):
1935641
PAR ID:
10410042
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Engineering
Volume:
2
Issue:
1
ISSN:
2731-3395
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The size and power limitations in small electronic systems such as wearable devices limit their potential. Significant energy is lost utilizing current computational schemes in processes such as analog-to-digital conversion and wireless communication for cloud computing. Edge computing, where information is processed near the data sources, was shown to significantly enhance the performance of computational systems and reduce their power consumption. In this work, we push computation directly into the sensory node by presenting the use of an array of electrostatic Microelectromechanical systems (MEMS) sensors to perform colocalized sensing-and-computing. The MEMS network is operated around the pull-in regime to access the instability jump and the hysteresis available in this regime. Within this regime, the MEMS network is capable of emulating the response of the continuous-time recurrent neural network (CTRNN) computational scheme. The network is shown to be successful at classifying a quasi-static input acceleration waveform into square or triangle signals in the absence of digital processors. Our results show that the MEMS may be a viable solution for edge computing implementation without the need for digital electronics or micro-processors. Moreover, our results can be used as a basis for the development of new types of specialized MEMS sensors (ex: gesture recognition sensors). 
    more » « less
  2. Recent advancements in wearable technology have improved lifestyle and medical practices, enabling personalized care ranging from fitness tracking, to real-time health monitoring, to predictive sensing. Wearable devices serve as an interface between humans and technology; however, this integration is far from seamless. These devices face various limitations such as size, biocompatibility, and battery constraints wherein batteries are bulky, are expensive, and require regular replacement. On-body energy harvesting presents a promising alternative to battery power by utilizing the human body’s continuous generation of energy. This review paper begins with an investigation of contemporary energy harvesting methods, with a deep focus on piezoelectricity. We then highlight the materials, configurations, and structures of such methods for self-powered devices. Here, we propose a novel combination of thin-film composites, kirigami patterns, and auxetic structures to lay the groundwork for an integrated piezoelectric system to monitor and sense. This approach has the potential to maximize energy output by amplifying the piezoelectric effect and manipulating the strain distribution. As a departure from bulky, rigid device design, we explore compositions and microfabrication processes for conformable energy harvesters. We conclude by discussing the limitations of these harvesters and future directions that expand upon current applications for wearable technology. Further exploration of materials, configurations, and structures introduce interdisciplinary applications for such integrated systems. Considering these factors can revolutionize the production and consumption of energy as wearable technology becomes increasingly prevalent in everyday life. 
    more » « less
  3. This paper presents an energy-efficient classification framework that performs human activity recognition (HAR). Typically, HAR classification tasks require a computational platform that includes a processor and memory along with sensors and their interfaces, all of which consume significant power. The presented framework employs microelectromechanical systems (MEMS) based Continuous Time Recurrent Neural Network (CTRNN) to perform HAR tasks very efficiently. In a real physical implementation, we show that the MEMS-CTRNN nodes can perform computing while consuming power on a nano-watts scale compared to the micro-watts state-of-the-art hardware. We also confirm that this huge power reduction doesn't come at the expense of reduced performance by evaluating its accuracy to classify the highly cited human activity recognition dataset (HAPT). Our simulation results show that the HAR framework that consists of a training module, and a network of MEMS-based CTRNN nodes, provides HAR classification accuracy for the HAPT that is comparable to traditional CTRNN and other Recurrent Neural Network (RNN) implantations. For example, we show that the MEMS-based CTRNN model average accuracy for the worst-case scenario of not using pre-processing techniques, such as quantization, to classify 5 different activities is 77.94% compared to 78.48% using the traditional CTRNN. 
    more » « less
  4. Abstract Recent advancements in wearable sensor technologies have enabled real-time monitoring of physiological and biochemical signals, opening new opportunities for personalized healthcare applications. However, conventional wearable devices often depend on rigid electronics components for signal transduction, processing, and wireless communications, leading to compromised signal quality due to the mechanical mismatches with the soft, flexible nature of human skin. Additionally, current computing technologies face substantial challenges in efficiently processing these vast datasets, with limitations in scalability, high power consumption, and a heavy reliance on external internet resources, which also poses security risks. To address these challenges, we have developed a miniaturized, standalone, chip-less wearable neuromorphic system capable of simultaneously monitoring, processing, and analyzing multimodal physicochemical biomarker data (i.e., metabolites, cardiac activities, and core body temperature). By leveraging scalable printing technology, we fabricated artificial synapses that function as both sensors and analog processing units, integrating them alongside printed synaptic nodes into a compact wearable system embedded with a medical diagnostic algorithm for multimodal data processing and decision making. The feasibility of this flexible wearable neuromorphic system was demonstrated in sepsis diagnosis and patient data classification, highlighting the potential of this wearable technology for real-time medical diagnostics. 
    more » « less
  5. null (Ed.)
    The goal of this paper is to provide a novel computing approach that can be used to reduce the power consumption, size, and cost of wearable electronics. To achieve this goal, the use of microelectromechanical systems (MEMS) sensors for simultaneous sensing and computing is introduced. Specifically, by enabling sensing and computing locally at the MEMS sensor node and utilizing the usually unwanted pull in/out hysteresis, we may eliminate the need for cloud computing and reduce the use of analog-to-digital converters, sampling circuits, and digital processors. As a proof of concept, we show that a simulation model of a network of three commercially available MEMS accelerometers can classify a train of square and triangular acceleration signals inherently using pull-in and release hysteresis. Furthermore, we develop and fabricate a network with finger arrays of parallel plate actuators to facilitate coupling between MEMS devices in the network using actuating assemblies and biasing assemblies, thus bypassing the previously reported coupling challenge in MEMS neural networks. 
    more » « less