skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hyperspectral Remote Sensing for Phenotyping the Physiological Drought Response of Common and Tepary Bean
Proximal remote sensing offers a powerful tool for high-throughput phenotyping of plants for assessing stress response. Bean plants, an important legume for human consumption, are often grown in regions with limited rainfall and irrigation and are therefore bred to further enhance drought tolerance. We assessed physiological (stomatal conductance and predawn and midday leaf water potential) and ground- and tower-based hyperspectral remote sensing (400 to 2,400 nm and 400 to 900 nm, respectively) measurements to evaluate drought response in 12 common bean and 4 tepary bean genotypes across 3 field campaigns (1 predrought and 2 post-drought). Hyperspectral data in partial least squares regression models predicted these physiological traits ( R 2 = 0.20 to 0.55; root mean square percent error 16% to 31%). Furthermore, ground-based partial least squares regression models successfully ranked genotypic drought responses similar to the physiologically based ranks. This study demonstrates applications of high-resolution hyperspectral remote sensing for predicting plant traits and phenotyping drought response across genotypes for vegetation monitoring and breeding population screening.  more » « less
Award ID(s):
1951244
PAR ID:
10410381
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Plant Phenomics
Volume:
5
ISSN:
2643-6515
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background Remote sensing instruments enable high-throughput phenotyping of plant traits and stress resilience across scale. Spatial (handheld devices, towers, drones, airborne, and satellites) and temporal (continuous or intermittent) tradeoffs can enable or constrain plant science applications. Here, we describe the technical details of TSWIFT (Tower Spectrometer on Wheels for Investigating Frequent Timeseries), a mobile tower-based hyperspectral remote sensing system for continuous monitoring of spectral reflectance across visible-near infrared regions with the capacity to resolve solar-induced fluorescence (SIF). Results We demonstrate potential applications for monitoring short-term (diurnal) and long-term (seasonal) variation of vegetation for high-throughput phenotyping applications. We deployed TSWIFT in a field experiment of 300 common bean genotypes in two treatments: control (irrigated) and drought (terminal drought). We evaluated the normalized difference vegetation index (NDVI), photochemical reflectance index (PRI), and SIF, as well as the coefficient of variation (CV) across the visible-near infrared spectral range (400 to 900 nm). NDVI tracked structural variation early in the growing season, following initial plant growth and development. PRI and SIF were more dynamic, exhibiting variation diurnally and seasonally, enabling quantification of genotypic variation in physiological response to drought conditions. Beyond vegetation indices, CV of hyperspectral reflectance showed the most variability across genotypes, treatment, and time in the visible and red-edge spectral regions. Conclusions TSWIFT enables continuous and automated monitoring of hyperspectral reflectance for assessing variation in plant structure and function at high spatial and temporal resolutions for high-throughput phenotyping. Mobile, tower-based systems like this can provide short- and long-term datasets to assess genotypic and/or management responses to the environment, and ultimately enable the spectral prediction of resource-use efficiency, stress resilience, productivity and yield. 
    more » « less
  2. Farmers and growers typically use approaches based on the crop environment and local meteorology, many of which are labor-intensive, to predict crop yield. These approaches have found broad acceptance but lack real-time and physiological feedback for near-daily management purposes. This is true for broad-acre crops, such as snap bean, which is valued at hundreds of millions of dollars in the annual agricultural market. We aim to investigate the relationships between snap bean yield and plant spectral and biophysical information, collected using a hyperspectral spectroradiometer (400 to 2500 nm). The experiment focused on 48 single snap bean plants (cv. Huntington) in a controlled greenhouse environment during the growth period (69 days). We used applicable accuracy and precision metrics from partial least squares regression and cross-validation methods to evaluate the predictive ability of two harvest stages, namely an early-harvest and late-harvest stage, against our yield indicator (bean pod weight). Four different spectral data sets were used to investigate whether such oversampled, hyperspectral data sets could accurately and precisely model observed variability in yield, in terms of the coefficient of determination (R2) and root-mean-square error (RMSE). The objective of our approach hinges on the philosophy that selected spectral bands from this study, i.e., those that best explain yield variability, can be downsampled from a hyperspectral system for use in a more cost-effective, operational multispectral sensor. Our results suggested the optimal period for spectral evaluation of snap bean yield is 20 to 25 or 32 days prior to harvest for the early- and late-harvest stages, respectively, with the best model performing at a low RMSE (3.02 g/plant) and a high coefficient of determination (R2 = 0.72). An unmanned aerial systems-mounted, affordable, and wavelength-programmable multispectral imager, with bands corresponding to those identified, could provide a near real-time and reliable yield estimate prior to harvest. 
    more » « less
  3. Assessing soil organic carbon (SOC) stocks is crucial for understanding the carbon sequestration potential of agroecosystems and for mitigating climate change. This study presents a novel method for assessing SOC and mineral content at various soil depths in sorghum crops using hyperspectral remote sensing. Conducted at Planthaven Farms, MO, the research encompassed ten genotypes across 30 plots, yielding 180 soil samples from six depth intervals (0–150 cm) of bare soil. Chemical analyses determined the SOC and mineral levels, which were then compared to spectral data from HySpex indoor sensors. We utilized time-frequency analysis methods, including discrete wavelet transformation (DWT), continuous wavelet transformation (CWT), and frame transformation along with traditional spectral transformations, specifically fractional derivatives and continuum removal. The analysis revealed the shortwave infrared (SWIR) region, particularly the 1800–2000 nm range, as having the strongest correlations with SOC content (with R2 exceeding 0.8). The visible near-infrared (VNIR) region also provided valuable insights. Models incorporating CWT achieved high accuracy (test R2 exceeding 0.9), while frame transformation achieved strong accuracy (test R2 between 0.7 and 0.8) with fewer features. The random forest regressor (RFR) proved to be most robust, demonstrating superior accuracy and reduced overfitting compared to support vector regression (SVR), partial least squares regression (PLSR), and deep neural network (DNN) models. The models demonstrated the efficacy of hyperspectral data for SOC estimation, suggesting potential for future applications that integrate this data with above-ground biomass to improve SOC mapping across larger scales. This research offers a promising spectral transformation approach for effective carbon management and sustainable agriculture in a changing climate. 
    more » « less
  4. Elizabeth Borer (Ed.)
    Understanding spatial and temporal variation in plant traits is needed to accurately predict how communities and ecosystems will respond to global change. The National Ecological Observatory Network’s (NEON’s) Airborne Observation Platform (AOP) provides hyperspectral images and associated data products at numerous field sites at 1 m spatial resolution, potentially allowing high-resolution trait mapping. We tested the accuracy of readily available data products of NEON’s AOP, such as Leaf Area Index (LAI), Total Biomass, Ecosystem Structure (Canopy height model [CHM]), and Canopy Nitrogen, by comparing them to spatially extensive field measurements from a mesic tallgrass prairie. Correlations with AOP data products exhibited generally weak or no relationships with corresponding field measurements. The strongest relationships were between AOP LAI and ground-measured LAI (r = 0.32) and AOP Total Biomass and ground-measured biomass (r = 0.23). We also examined how well the full reflectance spectra (380–2,500 nm), as opposed to derived products, could predict vegetation traits using partial least-squares regression (PLSR) models. Among all the eight traits examined, only Nitrogen had a validation of more than 0.25. For all vegetation traits, validation ranged from 0.08 to 0.29 and the range of the root mean square error of prediction (RMSEP) was 14–64%. Our results suggest that currently available AOP-derived data products should not be used without extensive ground-based validation. Relationships using the full reflectance spectra may be more promising, although careful consideration of field and AOP data mismatches in space and/or time, biases in field-based measurements or AOP algorithms, and model uncertainty are needed. Finally, grassland sites may be especially challenging for airborne spectroscopy because of their high species diversity within a small area, mixed functional types of plant communities, and heterogeneous mosaics of disturbance and resource availability. Remote sensing observations are one of the most promising approaches to understanding ecological patterns across space and time. But the opportunity to engage a diverse community of NEON data users will depend on establishing rigorous links with in-situ field measurements across a diversity of sites. 
    more » « less
  5. Grapevine rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhance scion physiology. Direct leaf-level physiological parameters like net assimilation rate, stomatal conductance to water vapor, quantum yield of PSII, and transpiration can illuminate the rootstock effect on scion physiology. However, these measures are time-consuming and limited to leaf-level analysis. This study used different rootstocks to investigate the potential application of aerial hyperspectral imagery in the estimation of canopy level measurements. A statistical framework was developed as an ensemble stacked regression (REGST) that aggregated five different individual machine learning algorithms: Least absolute shrinkage and selection operator (Lasso), Partial least squares regression (PLSR), Ridge regression (RR), Elastic net (ENET), and Principal component regression (PCR) to optimize high-throughput assessment of vine physiology. In addition, a Convolutional Neural Network (CNN) algorithm was integrated into an existing REGST, forming a hybrid CNN-REGST model with the aim of capturing patterns from the hyperspectral signal. Based on the findings, the performance of individual base models exhibited variable prediction accuracies. In most cases, Ridge Regression (RR) demonstrated the lowest test Root Mean Squared Error (RMSE). The ensemble stacked regression model (REGST) outperformed the individual machine learning algorithms with an increase in R2 by (0.03 to 0.1). The performances of CNN-REGST and REGST were similar in estimating the four different traits. Overall, these models were able to explain approximately 55–67% of the variation in the actual ground-truth data. This study suggests that hyperspectral features integrated with powerful AI approaches show great potential in tracing functional traits in grapevines. 
    more » « less