skip to main content


Title: The Renovated Thacher Observatory and First Science Results
Abstract Located on the campus of the Thacher School in Southern California, the Thacher Observatory has a legacy of astronomy research and education that dates back to the late 1950s. In 2016, the observatory was fully renovated with upgrades including a new 0.7 m telescope, a research grade camera, and a slit dome with full automation capabilities. The low-elevation site is bordered by the Los Padres National Forest and therefore affords dark to very dark skies allowing for accurate and precise photometric observations. We present a characterization of the site including sky brightness, weather, and seeing, and we demonstrate the on-sky performance of the facility. Our primary research programs are based around our multi-band photometric capabilities and include photometric monitoring of variable sources, a nearby supernova search and followup program, a quick response transient followup effort, and exoplanet and eclipsing binary light curves. Select results from these programs are included in this work which highlight the broad range of science available to an automated observatory with a moderately sized telescope.  more » « less
Award ID(s):
1911206 1815935 1518052
NSF-PAR ID:
10410430
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Publications of the Astronomical Society of the Pacific
Volume:
134
Issue:
1033
ISSN:
0004-6280
Page Range / eLocation ID:
035005
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The “Condor Array Telescope” or “Condor” is a high-performance “array telescope” comprised of six apochromatic refracting telescopes of objective diameter 180 mm, each equipped with a large-format, very low-read-noise (≈1.2 e − ), very rapid-read-time (<1 s) CMOS camera. Condor is located at a very dark astronomical site in the southwest corner of New Mexico, at the Dark Sky New Mexico observatory near Animas, roughly midway between (and more than 150 km from either) Tucson and El Paso. Condor enjoys a wide field of view (2.29 × 1.53 deg 2 or 3.50 deg 2 ), is optimized for measuring both point sources and extended, very low-surface-brightness features, and for broad-band images can operate at a cadence of 60 s (or even less) while remaining sky-noise limited with a duty cycle near 100%. In its normal mode of operation, Condor obtains broad-band exposures of exposure time 60 s over dwell times spanning dozens or hundreds of hours. In this way, Condor builds up deep, sensitive images while simultaneously monitoring tens or hundreds of thousands of point sources per field at a cadence of 60 s. Condor is also equipped with diffraction gratings and with a set of He ii 468.6 nm, [O iii ] 500.7 nm, He i 587.5 nm, H α 656.3 nm, [N ii ] 658.4 nm, and [S ii ] 671.6 nm narrow-band filters, allowing it to address a variety of broad- and narrow-band science issues. Given its unique capabilities, Condor can access regions of “astronomical discovery space” that have never before been studied. Here we introduce Condor and describe various aspects of its performance. 
    more » « less
  2. Abstract

    We verified for photometric stability a set of DA white dwarfs with Hubble Space Telescope magnitudes from the near-ultraviolet to the near-infrared and ground-based spectroscopy by using time-spaced observations from the Las Cumbres Observatory network of telescopes. The initial list of 38 stars was whittled to 32 final ones, which comprise a high-quality set of spectrophotometric standards. These stars are homogeneously distributed around the sky and are all fainter thanr∼ 16.5 mag. Their distribution is such that at least two of them would be available to be observed from any observatory on the ground at any time at airmass less than 2. Light curves and different variability indices from the Las Cumbres Observatory data were used to determine the stability of the candidate standards. When available, Pan-STARRS1, Zwicky Transient Facility, and TESS data were also used to confirm the star classification. Our analysis showed that four DA white dwarfs may exhibit evidence of photometric variability, while a fifth is cooler than our established lower temperature limit, and a sixth star might be a binary. In some instances, due to the presence of faint nearby red sources, care should be used when observing a few of the spectrophotometric standards with ground-based telescopes. Light curves and finding charts for all the stars are provided.

     
    more » « less
  3. The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) is a consortium of 20 institutions across the US and Puerto Rico, founded to promote undergraduate research and faculty development within the extragalactic ALFALFA HI blind survey project and follow-up programs. The objective of the UAT is to provide opportunities for its members to develop expertise in the technical aspects of observational radio spectroscopy, its associated data analysis, and the motivating science. Partnering with Arecibo Observatory, the UAT has worked with more than 280 undergraduates and 26 faculty to date, offering 8 workshops onsite at Arecibo (148 undergraduates), observing runs at Arecibo (69 undergraduates), remote observing runs on campus, undergraduate research projects based on Arecibo science (120 academic year and 185 summer projects), and presentation of results at national meetings such as the AAS (at AAS229: Ball et al., Collova et al., Davis et al., Miazzo et al., Ruvolo et al, Singer et al., Cannon et al., Craig et al., Koopmann et al., O'Donoghue et al.). 40% of the students and 45% of the faculty participants have been women and members of underrepresented groups. More than 90% of student alumni are attending graduate school and/or pursuing a career in STEM. 42% of those pursuing graduate degrees in Physics or Astronomy are women.In this presentation, we summarize the UAT program and the current research efforts of UAT members based on Arecibo science, including multiwavelength followup observations of ALFALFA sources, the UAT Collaborative Groups Project, the Survey of HI in Extremely Low-mass Dwarfs (SHIELD), and the Arecibo Pisces-Perseus Supercluster Survey (APPSS). This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, AST-121105, and AST-1637339. 
    more » « less
  4. The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) is a consortium of 20 institutions across the US and Puerto Rico, founded to promote undergraduate research and faculty development within the extragalactic ALFALFA HI blind survey project and follow-up programs. The objective of the UAT is to provide opportunities for its members to develop expertise in the technical aspects of observational radio spectroscopy, its associated data analysis, and the motivating science. Partnering with Arecibo Observatory, the UAT has worked with more than 280 undergraduates and 26 faculty to date, offering 8 workshops onsite at Arecibo (148 undergraduates), observing runs at Arecibo (69 undergraduates), remote observing runs on campus, undergraduate research projects based on Arecibo science (120 academic year and 185 summer projects), and presentation of results at national meetings such as the AAS (at AAS229: Ball et al., Collova et al., Davis et al., Miazzo et al., Ruvolo et al, Singer et al., Cannon et al., Craig et al., Koopmann et al., O'Donoghue et al.). 40% of the students and 45% of the faculty participants have been women and members of underrepresented groups. More than 90% of student alumni are attending graduate school and/or pursuing a career in STEM. 42% of those pursuing graduate degrees in Physics or Astronomy are women.In this presentation, we summarize the UAT program and the current research efforts of UAT members based on Arecibo science, including multiwavelength followup observations of ALFALFA sources, the UAT Collaborative Groups Project, the Survey of HI in Extremely Low-mass Dwarfs (SHIELD), and the Arecibo Pisces-Perseus Supercluster Survey (APPSS). This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, AST-121105, and AST-1637339. 
    more » « less
  5. Abstract

    We present the results from our ongoing spectroscopic survey targeting low-mass white dwarf binaries, focusing on the southern sky. We used a Gaia DR2- and eDR3-based selection and identified 28 new binaries, including 19 new extremely low-mass (ELM) white dwarfs, one short period, likely eclipsing, DABZ, and two potential LISA binaries. We present the orbital and atmospheric parameters for each new binary based on our spectroscopic follow up. Four of our new binaries show periodic photometric variability in TESS 2 minutes cadence data, including one new eclipsing double-lined spectroscopic binary. Three others show periodic photometric variability in ZTF, including one new eclipsing binary. We provide estimates for the inclinations and scaled component radii for these ZTF variables, based on light-curve modeling of our high-speed photometric follow-up observations. Our observations have increased the sample of ELM Survey binaries identified in the southern sky to 41, an increase of 64%. Future time domain surveys, such as BlackGEM and the Vera C. Rubin Observatory Legacy Survey of Space and Time, will efficiently identify photometric variables in the southern sky and significantly increase the population of southern sky low-mass white dwarf binaries, leading to a more complete all-sky population of these systems.

     
    more » « less