Cirne, Walfredo
; Rodrigo, Gonzalo P.
; Klusáček, Dalibor
(Ed.)
Datacenter scheduling research often assumes resources as a constant quantity, but increasingly external factors shape capacity dynamically, and beyond the control of an operator. Based on emerging examples, we define a new, open research challenge: the variable capacity resource scheduling problem. The objective here is effective resource utilization despite sudden, perhaps large, changes in the available resources.
We define the problem, key dimensions of resource capacity variation, and give specific examples that arise from the natural world (carbon- content, power price, datacenter cooling, and more). Key dimensions of the resource capacity variation include dynamic range, frequency, and structure. With these dimensions, an empirical trace can be character- ized, abstracting it from the many possible important real-world generators of variation.
Resource capacity variation can arise from many causes including weather, market prices, renewable energy, carbon emission targets, and internal dynamic power management constraints. We give examples of three dif- ferent sources of variable capacity.
Finally, we show variable resource capacity presents new scheduling challenges. We show how variation can cause significant performance degra- dation in existing schedulers, with up to 60% goodput reduction. Further, initial results also show intelligent scheduling techniques can be helpful. These insights show the promise and opportunity for future scheduling studies on resource volatility.
more »
« less