skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Quantum Stoner–Wohlfarth model of two-dimensional single-domain magnets
The Stoner–Wohlfarth model is a classical model for magnetic hysteresis of single-domain magnets. For two-dimensional (2D) magnets at finite temperatures, the Stoner–Wohlfarth model must be extended to include intrinsic strong spin fluctuations. We predict several fundamentally different hysteresis properties between 2D and 3D magnets. The magnetization switching diagram known as the astroid figure in the conventional Stoner–Wohlfarth model becomes highly temperature dependent and asymmetric with respect to the transverse and longitudinal magnetic fields. Our results provide new insights into the spintronics applications based on 2D magnetic materials.  more » « less
Award ID(s):
2011331
PAR ID:
10410815
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
133
Issue:
16
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The developing material class of van der Waals (vdW) magnets has attracted great interest due to their novel properties such as gate and strain tunable magnetism. Magnetism at the atomic limit remains difficult to explore however due to the air instability of most vdW ferromagnets. In this work, we demonstrate that pre-fabricated Hall bar electrodes can be used to probe magnetism in Fe3GeTe2 (FGT) flakes via the anomalous Hall effect. Utilizing this device structure, we systematically investigated the magnetic properties of FGT. Clear ferromagnetic hysteresis windows were clearly observed at temperatures up to 200 K. These vdW Hall bar structures provides a highly efficient and damage-free strategy for metal integration, which could be used in many other 2D magnetic materials. 
    more » « less
  2. The discovery of atomic monolayer magnetic materials has stimulated intense research activities in the two-dimensional (2D) van der Waals (vdW) materials community. The field is growing rapidly and there has been a large class of 2D vdW magnetic compounds with unique properties, which provides an ideal platform to study magnetism in the atomically thin limit. In parallel, based on tunneling magnetoresistance and magneto-optical effect in 2D vdW magnets and their heterostructures, emerging concepts of spintronic and optoelectronic applications such as spin tunnel field-effect transistors and spin-filtering devices are explored. While the magnetic ground state has been extensively investigated, reliable characterization and control of spin dynamics play a crucial role in designing ultrafast spintronic devices. Ferromagnetic resonance (FMR) allows direct measurements of magnetic excitations, which provides insight into the key parameters of magnetic properties such as exchange interaction, magnetic anisotropy, gyromagnetic ratio, spin-orbit coupling, damping rate, and domain structure. In this review article, we present an overview of the essential progress in probing spin dynamics of 2D vdW magnets using FMR techniques. Given the dynamic nature of this field, we focus mainly on broadband FMR, optical FMR, and spin-torque FMR, and their applications in studying prototypical 2D vdW magnets. We conclude with the recent advances in laboratory- and synchrotron-based FMR techniques and their opportunities to broaden the horizon of research pathways into atomically thin magnets. 
    more » « less
  3. Abstract Lanthanide permanent magnets are widely used in applications ranging from nanotechnology to industrial engineering. However, limited access to the rare earths and rising costs associated with their extraction are spurring interest in the development of lanthanide‐free hard magnets. Zero‐ and one‐dimensional magnetic materials are intriguing alternatives due to their low densities, structural and chemical versatility, and the typically mild, bottom‐up nature of their synthesis. Here, we present two one‐dimensional cobalt(II) systems Co(hfac)2(R‐NapNIT) (R‐NapNIT=2‐(2′‐(R‐)naphthyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide, R=MeO or EtO) supported by air‐stable nitronyl nitroxide radicals. These compounds are single‐chain magnets and exhibit wide, square magnetic hysteresis below 14 K, with giant coercive fields up to 65 or 102 kOe measured using static or pulsed high magnetic fields, respectively. Magnetic, spectroscopic, and computational studies suggest that the record coercivities derive not from three‐dimensional ordering but from the interaction of adjacent chains that compose alternating magnetic sublattices generated by crystallographic symmetry. 
    more » « less
  4. Abstract 2D van der Waals (vdW) magnets with layer‐dependent magnetic states and/or diverse magnetic interactions and anisotropies have attracted extensive research interest. Despite the advances, a notable challenge persists in effectively manipulating the tunneling anisotropic magnetoresistance (TAMR) of 2D vdW magnet‐based magnetic tunnel junctions (MTJs). Here, this study reports the novel and anomalous tunneling magnetoresistance (TMR) oscillations and pioneering demonstration of bias and gate voltage controllable TAMR in 2D vdW MTJs, utilizing few‐layer CrPS4. This material, inherently an antiferromagnet, transitions to a canted magnetic order upon application of external magnetic fields. Through TMR measurements, this work unveils the novel layer‐dependent oscillations in the tunneling resistance for few‐layer CrPS4devices under both out‐of‐plane and in‐plane magnetic fields, with a pronounced controllability via gate voltage. Intriguingly, this study demonstrates that both the polarity and magnitude of TAMR in CrPS4can be effectively tuned through either a bias or gate voltage. The mechanism behind this electrically tunable TAMR is further elucidated through first‐principles calculations. The implications of the findings are far‐reaching, providing new insights into 2D magnetism and opening avenues for the development of innovative spintronic devices based on 2D vdW magnets. 
    more » « less
  5. This paper examines a family of designs for magnetic cubes and counts how many configurations are possible for each design as a function of the number of modules. Magnetic modular cubes are cubes with magnets arranged on their faces. The magnets are positioned so that each face has either magnetic south or north pole outward. Moreover, we require that the net magnetic moment of the cube passes through the center of opposing faces. These magnetic arrangements enable coupling when cube faces with opposite polarity are brought in close proximity and enable moving the cubes by controlling the orientation of a global magnetic field. This paper investigates the 2D and 3D shapes that can be constructed by magnetic modular cubes, and describes all possible magnet arrangements that obey these rules. We select ten magnetic arrangements and assign a "color" to each of them for ease of visualization and reference. We provide a method to enumerate the number of unique polyominoes and polycubes that can be constructed from a given set of colored cubes. We use this method to enumerate all arrangements for up to 20 modules in 2D and 16 modules in 3D. We provide a motion planner for 2D assembly and through simulations compare which arrangements require fewer movements to generate and which arrangements are more common. Hardware demonstrations explore the self-assembly and disassembly of these modules in 2D and 3D. 
    more » « less