skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Love symmetry
A bstract Perturbations of massless fields in the Kerr-Newman black hole background enjoy a (“Love”) SL(2 , ℝ) symmetry in the suitably defined near zone approximation. We present a detailed study of this symmetry and show how the intricate behavior of black hole responses in four and higher dimensions can be understood from the SL(2 , ℝ) representation theory. In particular, static perturbations of four-dimensional black holes belong to highest weight SL(2 , ℝ) representations. It is this highest weight properety that forces the static Love numbers to vanish. We find that the Love symmetry is tightly connected to the enhanced isometries of extremal black holes. This relation is simplest for extremal charged spherically symmetric (Reissner-Nordström) solutions, where the Love symmetry exactly reduces to the isometry of the near horizon AdS 2 throat. For rotating (Kerr-Newman) black holes one is lead to consider an infinite-dimensional SL(2 , ℝ) ⋉ $$ \hat{\textrm{U}}{(1)}_{\mathcal{V}} $$ U ̂ 1 V extension of the Love symmetry. It contains three physically distinct subalgebras: the Love algebra, the Starobinsky near zone algebra, and the near horizon algebra that becomes the Bardeen-Horowitz isometry in the extremal limit. We also discuss other aspects of the Love symmetry, such as the geometric meaning of its generators for spin weighted fields, connection to the no-hair theorems, non-renormalization of Love numbers, its relation to (non-extremal) Kerr/CFT correspondence and prospects of its existence in modified theories of gravity.  more » « less
Award ID(s):
2210349
PAR ID:
10410978
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
10
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract It was shown recently that the static tidal response coefficients, called Love numbers, vanish identically for Kerr black holes in four dimensions. In this work, we confirm this result and extend it to the case of spin-0 and spin-1 perturbations. We compute the static response of Kerr black holes to scalar, electromagnetic, and gravitational fields at all orders in black hole spin. We use the unambiguous and gauge-invariant definition of Love numbers and their spin-0 and spin-1 analogs as Wilson coefficients of the point particle effective field theory. This definition also allows one to clearly distinguish between conservative and dissipative response contributions. We demonstrate that the behavior of Kerr black hole responses to spin-0 and spin-1 fields is very similar to that of the spin-2 perturbations. In particular, static conservative responses vanish identically for spinning black holes. This implies that vanishing Love numbers are a generic property of black holes in four-dimensional general relativity. We also show that the dissipative part of the response does not vanish even for static perturbations due to frame-dragging. 
    more » « less
  2. A<sc>bstract</sc> It was recently shown that (near-)extremal Kerr black holes are sensitive probes of small higher-derivative corrections to general relativity. In particular, these corrections produce diverging tidal forces on the horizon in the extremal limit. We show that adding a black hole charge makes this effect qualitatively stronger. Higher-derivative corrections to the Kerr-Newman solution produce tidal forces that scale inversely in the black hole temperature. We find that, unlike the Kerr case, for realistic values of the black hole charge large tidal forces can arise before quantum corrections due to the Schwarzian mode become important, so that the near-horizon behavior of the black hole is dictated by higher-derivative terms in the effective theory. 
    more » « less
  3. A bstract We study the near-zone symmetries of a massless scalar field on four-dimensional black hole backgrounds. We provide a geometric understanding that unifies various recently discovered symmetries as part of an SO(4 , 2) group. Of these, a subset are exact symmetries of the static sector and give rise to the ladder symmetries responsible for the vanishing of Love numbers. In the Kerr case, we compare different near-zone approximations in the literature, and focus on the implementation that retains the symmetries of the static limit. We also describe the relation to spin-1 and 2 perturbations. 
    more » « less
  4. Abstract In this note, we present a synopsis of geometric symmetries for (spin 0) perturbations around (4D) black holes and de Sitter space. For black holes, we focus on static perturbations, for which the (exact) geometric symmetries have the group structure of SO(1,3). The generators consist of three spatial rotations, and three conformal Killing vectors obeying a specialmelodiccondition. The static perturbation solutions form a unitary (principal series) representation of the group. The recently uncovered ladder symmetries follow from this representation structure; they explain the well-known vanishing of the black hole Love numbers. For dynamical perturbations around de Sitter space, the geometric symmetries are less surprising, following from the SO(1,4) isometry. As is known, the quasinormal solutions form a non-unitary representation of the isometry group. We provide explicit expressions for the ladder operators associated with this representation. In both cases, the ladder structures help connect the boundary condition at the horizon with that at infinity (black hole) or origin (de Sitter space), and they manifest as contiguous relations of the hypergeometric solutions. 
    more » « less
  5. We derive the explicit embedding of the effective Kerr spacetimes, which are pertinent to the vanishing of static Love numbers, soft hair descriptions of Kerr black holes, and low-frequency scalar-Kerr scattering amplitudes, as solutions within N = 2 supergravity. These spacetimes exhibit a hidden S L ( 2 , R ) × U ( 1 ) or S O ( 4 , 2 ) symmetry resembling the so called subtracted geometries with S L ( 2 , R ) × S L ( 2 , R ) symmetry, which accurately represent the near-horizon geometry of Kerr black holes and, as we will argue most accurately represents the internal structure of the Kerr black hole. To quantify the differences among the effective Kerr spacetimes, we compare their physical quantities, internal structures, and geodesic equations. Although their thermodynamic properties, including entropy, match those of Kerr, our study uncovers significant differences in the interiors of these effective Kerr solutions. A careful examination of the internal structure of the spacetimes highlights the distinctions between various effective Kerr geometries and their quasinormal spectra. Published by the American Physical Society2025 
    more » « less