Abstract Climate change poses a growing threat to many ecosystems, including grasslands, which are a current priority for conservation due to their vulnerability to interacting threats from human activity.North American grasslands are expected to experience warmer temperatures and more frequent and severe droughts in the coming decades, with potential consequences for native biodiversity.We conducted an experiment at Cedar Creek Ecosystem Science Reserve, Minnesota, USA, to investigate how warming and drought treatments affected grassland plant community structure over 6 years in plots planted with species mixtures.Warming consistently reduced plant species richness with its effects on Shannon diversity (which additionally considers species' relative abundances) and dominance varying across years. These warming‐by‐year interactions were likely driven by temporal variability in environmental conditions and species‐specific responses. Notably, legumes consistently showed positive responses to warming.Drought alone had minimal direct effects on species richness and diversity but reduced variability in diversity responses over time, suggesting greater stability of diversity under drought conditions.Synthesis. This study underscores the important role of warming in reducing species richness, altering diversity and reshaping functional group composition in grassland ecosystems. While temporal variability influenced the magnitude of warming effects on diversity, legumes' positive responses highlight the importance of functional group dynamics in potentially buffering against species loss. Long‐term experiments that allow consideration of interannual variability are essential for improving predictions of ecosystem responses and informing adaptive management strategies aimed at sustaining biodiversity and ecosystem functioning in grasslands.
more »
« less
Different assembly mechanisms of leaf epiphytic and endophytic bacterial communities underlie their higher diversity in more diverse forests
Abstract Plant microbiomes are known to influence host fitness and ecosystem functioning, but mechanisms regulating their structure are poorly understood.Here, we explored the assembly mechanisms of leaf epiphytic and endophytic bacterial communities using a subtropical forest biodiversity experiment.Both epiphytic and endophytic bacterial diversity increased as host tree diversity increased. However, the increased epiphytic diversity in more diverse forests was driven by greater epiphytic diversity (i.e. greaterα‐diversity) on individual trees, whereas the increased endophytic diversity in more diverse forests was driven by greater dissimilarity in endophytic composition (i.e. greaterβ‐diversity) among trees. Mechanistically, responses of epiphytes to changes in host diversity were consistent with mass effects, whereas responses of endophytes were consistent with species sorting.Synthesis. These results provided novel experimental evidence that biodiversity declines of plant species will lead to biodiversity declines of plant‐associated microbiomes, but the underlying mechanism may differ between habitats on the plant host.
more »
« less
- PAR ID:
- 10411052
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Ecology
- Volume:
- 111
- Issue:
- 5
- ISSN:
- 0022-0477
- Page Range / eLocation ID:
- p. 970-981
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Habitat loss is a major threat to biodiversity, but the effects of habitat fragmentation are less clear. Examining drivers of key demographic processes, such as reproduction, will clarify species‐level responses to fragmentation and broader effects on biodiversity. Yet, understanding how fragmentation affects demography has been challenging due to the many ways landscapes are altered by co‐occurring habitat loss and fragmentation, coupled with the rarity of experiments to disentangle these effects.In a large, replicated fragmentation experiment with open savanna habitats surrounded by pine plantation forests, we tested the effects of inter‐patch connectivity, patch edge‐to‐area ratio, and within‐patch distance from an edge on plant reproductive output. Using five experimentally planted species of restoration interest—three wind‐pollinated grass species and two insect‐pollinated forb species—we measured plant flowering, pollination rate, and seed production.All plant species were more likely to flower and produce more flowering structures farther from the forest edge. Connectivity and distance from an edge, however, had no effect on the pollination rate (regardless of pollination mode). Despite no influence of fragmentation on pollination, plant seed production increased farther from the edge for four of five species, driven by the increase in flower production.Synthesis. Altogether, we demonstrate that plant reproductive output (seed production) is decreased by habitat fragmentation through edge effects on flowering. Our work provides evidence that an important contributor to plant demography, reproductive output, is altered by edge effects in fragmented patches. These species‐level impacts of fragmentation may provide insight into the mechanisms of fragmentation effects on community‐level changes in biodiversity.more » « less
-
Summary Foliar fungal endophytes are one of the most diverse guilds of symbiotic fungi found in the photosynthetic tissues of every plant lineage, but it is unclear how plant environments and leaf resource availability shape their diversity.We explored correlations between leaf nutrient availability and endophyte diversity amongPinus muricataandVaccinium ovatumplants growing across a soil nutrient gradient spanning a series of coastal terraces in Mendocino, California.Endophyte richness decreased in plants with higher leaf nitrogen‐to‐phosphorus ratios for both host species, but increased with sodium, which may be toxic to fungi at high concentrations. Isolation frequency, a proxy of fungal biomass, was not significantly predicted by any of the same leaf constituents in the two plant species.We propose that stressed plants can exhibit both low foliar nutrients or high levels of toxic compounds, and that both of these stress responses predict endophyte species richness. Stressful conditions that limit growth of fungi may increase their diversity due to the suppression of otherwise dominating species. Differences between the host species in their endophyte communities may be explained by host specificity, leaf phenology, or microclimates.more » « less
-
Abstract After 25 years of biodiversity experiments, it is clear that higher biodiversity (B) plant communities are usually more productive and often have greater ecosystem functioning (EF) than lower diversity communities. However, the mechanisms underlying this positive biodiversity–ecosystem functioning (BEF) relationship are still poorly understood.The vast majority of past work in BEF research has focused on the roles of mathematically partitioned complementarity and selection effects. While these mathematical approaches have provided insights into underlying mechanisms, they have focused strongly on competition and resource partitioning.Importantly, mathematically partitioned complementarity effects include multiple facilitative mechanisms, including dilution of species‐specific pathogens, positive changes in soil nutrient cycling, associational defence and microclimate amelioration.Synthesis. This Special Feature takes an experimental and mechanistic approach to teasing out the facilitative mechanisms that underlie positive BEF relationships. As an example, we demonstrate diversity‐driven changes in microclimate amelioration. Articles in this Special Feature explore photoinhibition, experimental manipulations of microclimate, lidar examinations of plant canopy effects and higher‐order trophic interactions as facilitative mechanisms behind classic BEF processes. We emphasize the need for future BEF experiments to disentangle the facilitative mechanisms that are interlinked with niche complementarity to better understand the fundamental processes by which diversity regulates life on Earth.more » « less
-
Societal Impact Statement People plant, remove, and manage urban vegetation in cities for varying purposes and to varying extents. The direct manipulation of plants affects the benefits people receive from plants. In synthesizing several studies of urban biodiversity in Los Angeles, we find that cultivated plants differ from those in remnant natural areas. This highlights the importance of studying cultivated plants in cities, which is crucial for the design and planning of sustainable cities. Residents have created a new urban biome in Los Angeles, and this has consequences for associated organisms, ultimately resulting in a responsibility for society to determine what type of biome we wish to create. SummaryUrbanization is a large driver of biodiversity globally. Within cities, urban trees, gardens, and residential yards contribute extensively to plant biodiversity, although the consequences and mechanisms of plant cultivation for biodiversity are uncertain.We used Los Angeles, California, USA as a case study for investigating plant diversity in cultivated areas. We synthesized datasets quantifying the diversity of urban trees, residential yards, and community gardens in Los Angeles, the availability of plants from nurseries, and residents’ attitudes about plant attributes.Cultivated plant diversity was drastically different from remnant natural areas; compared to remnant natural areas, cultivated areas contained more exotic species, more than double the number of plant species, and turnover in plant functional trait distributions. In cultivated areas, most plants were intentionally planted and dominated by exotic species planted for ornamental purposes. Most tree species sampled in Los Angeles were available for sale in local nurseries. Residents’ preferences for specific plant traits were correlated with the trait composition of the plant community, suggesting cultivated plant communities at least partially reflect resident preferences.Our findings demonstrate the importance of cultivated species in a diverse megacity that are driven in part through commercial distribution. The cultivation of plants in Los Angeles greatly increases regional plant biodiversity through changes in species composition and functional trait distributions. The pervasive presence of cultivated species likely has many consequences for residents and the ecosystem services they receive compared with unmanaged or remnant urban areas.more » « less
An official website of the United States government
