skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fully desktop fabricated flexible graphene electrocorticography (ECoG) arrays
Abstract Objective: Flexible Electrocorticography (ECoG) electrode arrays that conform to the cortical surface and record surface field potentials from multiple brain regions provide unique insights into how computations occurring in distributed brain regions mediate behavior. Specialized microfabrication methods are required to produce flexible ECoG devices with high-density electrode arrays. However, these fabrication methods are challenging for scientists without access to cleanroom fabrication equipment. Results: Here we present a fully desktop fabricated flexible graphene ECoG array. First, we synthesized a stable, conductive ink via liquid exfoliation of Graphene in Cyrene. Next, we established a stencil-printing process for patterning the graphene ink via laser-cut stencils on flexible polyimide substrates. Benchtop tests indicate that the graphene electrodes have good conductivity of ∼1.1 × 10 3 S cm −1 , flexibility to maintain their electrical connection under static bending, and electrochemical stability in a 15 d accelerated corrosion test. Chronically implanted graphene ECoG devices remain fully functional for up to 180 d, with average in vivo impedances of 24.72 ± 95.23 kΩ at 1 kHz. The ECoG device can measure spontaneous surface field potentials from mice under awake and anesthetized states and sensory stimulus-evoked responses. Significance: The stencil-printing fabrication process can be used to create Graphene ECoG devices with customized electrode layouts within 24 h using commonly available laboratory equipment.  more » « less
Award ID(s):
2011401
PAR ID:
10411263
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Neural Engineering
Volume:
20
Issue:
1
ISSN:
1741-2560
Page Range / eLocation ID:
016019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Graphene has proven to be useful in biosensing applications. However, one of the main hurdles with printed graphene-based electrodes is achieving repeatable electrochemical performance from one printed electrode to another. We have developed a consistent fabrication process to control the sheet resistance of inkjet-printed graphene electrodes, thereby accomplishing repeatable electrochemical performance. Herein, we investigated the electrochemical properties of multilayered graphene (MLG) electrodes fully inkjet-printed (IJP) on flexible Kapton substrates. The electrodes were fabricated by inkjet printing three materials – (1) a conductive silver ink for electrical contact, (2) an insulating dielectric ink, and (3) MLG ink as the sensing material. The selected materials and fabrication methods provided great control over the ink rheology and material deposition, which enabled stable and repeatable electrochemical response: bending tests revealed the electrochemical behavior of these sensors remained consistent over 1000 bend cycles. Due to the abundance of structural defects ( e.g. , edge defects) present in the exfoliated graphene platelets, cyclic voltammetry (CV) of the graphene electrodes showed good electron transfer ( k = 1.125 × 10 −2 cm s −1 ) with a detection limit (0.01 mM) for the ferric/ferrocyanide redox couple, [Fe(CN) 6 ] −3/−4 , which is comparable or superior to modified graphene or graphene oxide-based sensors. Additionally, the potentiometric response of the electrodes displayed good sensitivity over the pH range of 4–10. Moreover, a fully IJP three-electrode device (MLG, platinum, and Ag/AgCl) also showed quasi-reversibility compared to a single IJP MLG electrode device. These findings demonstrate significant promise for scalable fabrication of a flexible, low cost, and fully-IJP wearable sensor system needed for space, military, and commercial biosensing applications. 
    more » « less
  2. Abstract Resistors are basic yet essential circuit components that must be fabricated with high precision at low cost if they are to be viable for flexible electronic applications. Inkjet printing is one of many additive fabrication techniques utilized to realize this goal. In this work, a process termed self-aligned capillarity-assisted lithography for electronics (SCALE) was used to fabricate inkjet-printed resistors on flexible substrates. Capillary channels and reservoirs imprinted onto flexible substrates enabled precise control of resistor geometry and straightforward alignment of materials. More than 300 devices were fabricated using poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as the resistive material and silver as the electrode material. By varying PEDOT:PSS ink formulation and resistor geometry, resistances spanning from 170 Ω to 3.8 MΩ were achieved. Over 98% of devices were functional and the relative standard deviation in resistance ranged from 3% to 18% depending on resistor length and ink composition. The resistors showed no significant change in resistance after 10 000 cycles of bend testing at 1.6% surface tensile strain. In summary, this work demonstrated a fully roll-to-roll compatible process for inkjet printing resistors with superior properties. 
    more » « less
  3. Personalized healthcare (PHC) is a booming sector in the health science domain wherein researchers from diverse technical backgrounds are focusing on the need for remote human health monitoring. PHC employs wearable electronics, viz. group of sensors integrated on a flexible substrate, embedded in the clothes, or attached to the body via adhesive. PHC wearable flexible electronics (FE) offer numerous advantages including being versatile, comfortable, lightweight, flexible, and body conformable. However, finding the appropriate mass manufacturing technologies for these PHC devices is still a challenge. It needs an understanding of the physics, performance, and applications of printing technologies for PHC wearables, ink preparation, and bio-compatible device fabrication. Moreover, the detailed study of the operating principle, ink, and substrate materials of the printing technologies such as inkjet printing will help identify the opportunities and emerging challenges of applying them in manufacturing of PHC wearable devices. In this article, we attempt to bridge this gap by reviewing the printing technologies in the PHC domain, especially inkjet printing in depth. This article presents a brief review of the state-of-the-art wearable devices made by various printing methods and their applications in PHC. It focuses on the evaluation and application of these printing technologies for PHC wearable FE devices, along with advancements in ink preparation and bio-compatible device fabrication. The performance of inkjet, screen, gravure, and flexography printing, as well as the inks and substrates, are comparatively analyzed to aid PHC wearable sensor design, research, fabrication, and mass manufacturing. Moreover, it identifies the application of the emerging mass-customizable printing technologies, such as inkjet printing, in the manufacturing of PHC wearable devices, and reviews the printing principles, drop generation mechanisms, ink formulations, ink-substrate interactions, and matching strategies for printing wearable devices on stretchable substrates. Four surface matching strategies are extracted from literature for the guidance of inkjet printing of PHC stretchable electronics. The electro-mechanical performance of the PHC FE devices printed using four surface matching strategies is comparatively evaluated. Further, the article extends its review by describing the scalable integration of PHC devices and finally presents the future directions of research in printing technologies for PHC wearable devices. 
    more » « less
  4. Abstract Printed electronics is attracting a great deal of attention in both research and commercialization as it enables fabrication of large‐scale, low‐cost electronic devices on a variety of substrates. Printed electronics plays a critical role in facilitating widespread flexible electronics and more recently stretchable electronics. Conductive nanomaterials, such as metal nanoparticles and nanowires, carbon nanotubes, and graphene, are promising building blocks for printed electronics. Nanomaterial‐based printing technologies, formulation of printable inks, post‐printing treatment, and integration of functional devices have progressed substantially in the recent years. This review summarizes basic principles and recent development of common printing technologies, formulations of printable inks based on conductive nanomaterials, deposition of conductive inks via different printing techniques, and performance enhancement by using various sintering methods. While this review places emphasis on conductive nanomaterials, the printing techniques and ink formulations can be applied to other materials such as semiconducting and insulating nanomaterials. Moreover, some applications of printed flexible and stretchable electronic devices are reviewed to illustrate their potential. Finally, the future challenges and prospects for printing conductive nanomaterials are discussed. 
    more » « less
  5. null (Ed.)
    Integrative neural interfaces combining neurophysiology and optogenetics with neural imaging provide numerous opportunities for neuroscientists to study the structure and function of neural circuits in the brain. Such a comprehensive interface demands miniature electrode arrays with high transparency, mechanical flexibility, electrical conductivity, and biocompatibility. Conventional transparent microelectrodes made of a single material, such as indium tin oxide (ITO), ultrathin metals, graphene and poly-(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS), hardly possess the desired combination of those properties. Herein, ultra-flexible, highly conductive and fully transparent microscale electrocorticogram (μECoG) electrode arrays made of a PEDOT:PSS–ITO–Ag–ITO assembly are constructed on thin parylene C films. The PEDOT:PSS–ITO–Ag–ITO assembly achieves a maximum ∼14% enhancement in light transmission over a broad spectrum (350–650 nm), a significant reduction in electrochemical impedance by 91.25%, and an increase in charge storage capacitance by 1229.78 μC cm −2 . Peeling, bending, and Young's modulus tests verify the enhanced mechanical flexibility and robustness of the multilayer assembly. The μECoG electrodes enable electrical recordings with high signal-to-noise ratios (SNRs) (∼35–36 dB) under different color photostimulations, suggesting that the electrodes are resilient to photon-induced artifacts. In vivo animal experiments confirm that our array can successfully record light-evoked ECoG oscillations from the primary visual cortex (V1) of an anesthetized rat. 
    more » « less