skip to main content


Title: Enhancement of voltage controlled magnetic anisotropy (VCMA) through electron depletion
Recent advancement in the switching of perpendicular magnetic tunnel junctions with an electric field has been a milestone for realizing ultra-low energy memory and computing devices. To integrate with current spin-transfer torque-magnetic tunnel junction and spin–orbit torque-magnetic tunnel junction devices, the typical linear fJ/V m range voltage controlled magnetic anisotropy (VCMA) needs to be significantly enhanced with approaches that include new materials or stack engineering. A possible bidirectional and 1.1 pJ/V m VCMA effect has been predicted by using heavily electron-depleted Fe/MgO interfaces. To improve upon existing VCMA technology, we have proposed inserting high work function materials underneath the magnetic layer. This will deplete electrons from the magnetic layer biasing the gating window into the electron-depleted regime, where the pJ/V m and bidirectional VCMA effect was predicted. We have demonstrated tunable control of the Ta/Pd(x)/Ta underlayer's work function. By varying the Pd thickness (x) from 0 to 10 nm, we have observed a tunable change in the Ta layer's work function from 4.32 to 4.90 eV. To investigate the extent of the electron depletion as a function of the Pd thickness in the underlayer, we have performed DFT calculations on supercells of Ta/Pd(x)/Ta/CoFe/MgO, which demonstrate that electron depletion will not be fully screened at the CoFe/MgO interface. Gated pillar devices with Hall cross geometries were fabricated and tested to extract the anisotropy change as a function of applied gate voltage for samples with various Pd thicknesses. The electron-depleted Pd samples show three to six times VCMA improvement compared to the electron accumulated Ta control sample.  more » « less
Award ID(s):
2011401
NSF-PAR ID:
10411301
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
131
Issue:
15
ISSN:
0021-8979
Page Range / eLocation ID:
153904
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The van der Waals magnets CrX3(X = I, Br, and Cl) exhibit highly tunable magnetic properties and are promising candidates for developing novel two‐dimensional (2D) spintronic devices such as magnetic tunnel junctions and spin tunneling transistors. Previous studies of the antiferromagnetic CrCl3have mainly focused on mechanically exfoliated samples. Controlled synthesis of high quality atomically thin flakes is critical for their technological implementation but has not been achieved to date. This work reports the growth of large CrCl3flakes down to monolayer thickness via the physical vapor transport technique. Both isolated flakes with well‐defined facets and long stripe samples with the trilayer portion exceeding 60 µm have been obtained. High‐resolution transmission electron microscopy studies show that the CrCl3flakes are single crystalline in the monoclinic structure, consistent with the Raman results. The room temperature stability of the CrCl3flakes decreases with decreasing thickness. The tunneling magnetoresistance of graphite/CrCl3/graphite tunnel junctions confirms that few‐layer CrCl3possesses in‐plane magnetic anisotropy and Néel temperature of 17 K. This study paves the path for developing CrCl3‐based scalable 2D spintronic applications.

     
    more » « less
  2. Abstract

    Despite their great promise for providing a pathway for very efficient and fast manipulation of magnetization, spin‐orbit torque (SOT) operations are currently energy inefficient due to a low damping‐like SOT efficiency per unit current bias, and/or the very high resistivity of the spin Hall materials. This work reports an advantageous spin Hall material, Pd1−xPtx, which combines a low resistivity with a giant spin Hall effect as evidenced with three independent SOT ferromagnetic detectors. The optimal Pd0.25Pt0.75alloy has a giant internal spin Hall ratio of >0.60 (damping‐like SOT efficiency of ≈0.26 for all three ferromagnets) and a low resistivity of ≈57.5 µΩ cm at a 4 nm thickness. Moreover, it is found that the Dzyaloshinskii–Moriya interaction (DMI), the key ingredient for the manipulation of chiral spin arrangements (e.g., magnetic skyrmions and chiral domain walls), is considerably strong at the Pd1−xPtx/Fe0.6Co0.2B0.2interface when compared to that at Ta/Fe0.6Co0.2B0.2or W/Fe0.6Co0.2B0.2interfaces and can be tuned by a factor of 5 through control of the interfacial spin‐orbital coupling via the heavy metal composition. This work establishes a very effective spin current generator that combines a notably high energy efficiency with a very strong and tunable DMI for advanced chiral spintronics and spin torque applications.

     
    more » « less
  3. Abstract

    Nb and its compounds are widely used in quantum computing due to their high superconducting transition temperatures and high critical fields. Devices that combine superconducting performance and spintronic non-volatility could deliver unique functionality. Here we report the study of magnetic tunnel junctions with Nb as the heavy metal layers. An interfacial perpendicular magnetic anisotropy energy density of 1.85 mJ/m2was obtained in Nb/CoFeB/MgO heterostructures. The tunneling magnetoresistance was evaluated in junctions with different thickness combinations and different annealing conditions. An optimized magnetoresistance of 120% was obtained at room temperature, with a damping parameter of 0.011 determined by ferromagnetic resonance. In addition, spin-transfer torque switching has also been successfully observed in these junctions with a quasistatic switching current density of 7.3$$\times \;10^{5}$$×105A/cm2.

     
    more » « less
  4. The single-molecule magnet (SMM) is demonstrated here to transform conventional magnetic tunnel junctions (MTJ), a memory device used in present-day computers, into solar cells. For the first time, we demonstrated an electronic spin-dependent solar cell effect on an SMM-transformed MTJ under illumination from unpolarized white light. We patterned cross-junction-shaped devices forming a CoFeB/MgO/CoFeB-based MTJ. The MgO barrier thickness at the intersection between the two exposed junction edges was less than the SMM extent, which enabled the SMM molecules to serve as channels to conduct spin-dependent transport. The SMM channels yielded a region of long-range magnetic ordering around these engineered molecular junctions. Our SMM possessed a hexanuclear [Mn6(μ3-O)2(H2N-sao)6(6-atha)2(EtOH)6] [H2N-saoH = salicylamidoxime, 6-atha = 6-acetylthiohexanoate] complex and thiols end groups to form bonds with metal films. SMM-doped MTJs were shown to exhibit a solar cell effect and yielded ≈ 80 mV open-circuit voltage and ≈ 10 mA/cm2 saturation current density under illumination from one sun equivalent radiation dose. A room temperature Kelvin Probe AFM (KPAFM) study provided direct evidence that the SMM transformed the electronic properties of the MTJ's electrodes over a lateral area in excess of several thousand times larger in extent than the area spanned by the molecular junctions themselves. The decisive factor in observing this spin photovoltaic effect is the formation of SMM spin channels between the two different ferromagnetic electrodes, which in turn is able to catalyze the long-range transformation in each electrode around the junction area. 
    more » « less
  5. Abstract Magnetic random-access memory (MRAM) based on voltage-controlled magnetic anisotropy in magnetic tunnel junctions (MTJs) is a promising candidate for high-performance computing applications, due to its lower power consumption, higher bit density, and the ability to reduce the access transistor size when compared to conventional current-controlled spin-transfer torque MRAM. The key to realizing these advantages is to have a low MTJ switching voltage. Here, we report a perpendicular MTJ structure with a high voltage-controlled magnetic anisotropy coefficient ~130 fJ/Vm and high tunnel magnetoresistance exceeding 150%. Owing to the high voltage-controlled magnetic anisotropy coefficient, we demonstrate sub-nanosecond precessional switching of nanoscale MTJs with diameters of 50 and 70 nm, using a voltage lower than 1 V. We also show scaling of this switching mechanism down to 30 nm MTJs, with voltages close to 2 V. The results pave the path for the future development and application of voltage-controlled MRAMs and spintronic devices in emerging computing systems. 
    more » « less