skip to main content


Title: Thermal, Physical, and Optical Properties of the Solution and Melt Synthesized Single Crystal CsPbBr3 Halide Perovskite
Inorganic lead-halide perovskite, cesium lead bromide (CsPbBr3), shows outstanding optoelectronic properties. Both solution- and melt-based methods have been proposed for CsPbBr3 crystal growth. The solution-based growth was done at low-temperature, whereas the melt-based growth was done at high-temperature. However, the comparison of optical, physical, and defect states using these two different growth conditions has been scarcely studied. Here, we have compared the thermal and optical properties of solution-grown and melt-grown single crystals of CsPbBr3. Positron Annihilation Lifetime Spectroscopy (PALS) analysis showed that melt-grown crystal has a relatively smaller number of defects than the chemical synthesis method. In addition, crystals grown using the chemical method showed a higher fluorescence lifetime than melt-grown CsPbBr3.  more » « less
Award ID(s):
2045640
NSF-PAR ID:
10411565
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemosensors
Volume:
10
Issue:
9
ISSN:
2227-9040
Page Range / eLocation ID:
369
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, there has been considerable interest in x-ray and gamma ray detectors with large volume and high energy resolution that operate at room temperature. To improve detector energy resolution, the carrier mobility-lifetime product needs to be increased, and the electronic trap state concentration needs to be minimized. Defect concentrations in the part per billion range can alter the charge transport and carrier recombination lifetime. In this work, thermally stimulated current spectroscopy measurements were systematically carried out in bulk halide perovskite single crystals of CsPbBr3 over a temperature range of 80–320 K. The origins and trap parameters of CsPbBr3 crystals from the solution growth and melt growth procedures were determined and compared. Trap concentrations were ranged from 1 × 1011 to 1 × 1016 cm−3. Appreciable detector performance was observed for CsPbBr3 crystals with trap concentrations less than 1 × 1014 cm−3. The comparison of spectral responses of crystal samples grown using two different methods shows that, after purification, solution-grown crystals are comparable to melt-grown crystals in terms of low defect concentration and improved detector performance. For an improved mobility-lifetime product and enhanced spectral response to high energy radiation from fissile materials, trap states in either type of a crystal ingot must be reduced closer to 1011 cm−3.

     
    more » « less
  2. A comparative study was performed on the mid-infrared emission properties of trivalent erbium (Er3+) and holmium (Ho3+) doped fluorides (BaF2, NaYF4) and ternary chloride-based crystals (CsCdCl3, KPb2Cl5,). All crystals were grown by vertical Bridgman technique. Following optical excitation at 800 nm, all Er3+ doped fluorides and chlorides exhibited mid-infrared emissions at ~4500 nm at room temperature. The mid-infrared emission at 4500 nm, originating from the 4I9/2 -> 4I11/2 transition, showed long emission lifetime values of ~11.6 ms and ~3.2 ms for Er3+ doped CsCdCl3 and KPb2Cl5 crystals, respectively. In comparison, Er3+ doped and BaF2 and NaYF4 demonstrated rather short lifetimes in the microsecond range of ~47 us and ~205 us, respectively. Temperature dependent decay time measurements were performed for the 4I9/2 excited state for Er3+ doped BaF2, NaYF4, and CsCdCl3 crystals. We noticed that the emission lifetimes of Er3+:CsCdCl3 were nearly independent of the temperature, whereas significant emission quenching of 4I9/2 level was observed for both Er3+ doped fluoride crystals. The temperature dependence of the multiphonon relaxation rate for 4.5 um mid-IR emissions was determined for the studied Er3+ doped fluorides using the well-known energy-gap law. Using ~890 nm excitation, all studied Ho3+ doped fluorides and chlorides exhibited mid-infrared emissions at ~3900 nm originating from the 5I5 -> 5I6 transition. The longest emission lifetime of the 5I5 level was determined to be ~14.55 ms from the Ho3+:CsCdCl3 crystal. The room temperature stimulated emission cross-sections for the Er3+ 4I9/2 -> 4I11/2 and Ho3+ 5I5 -> 5I6 transitions were determined using the Füchtbauer-Landenburg equation. Among the studied crystals, Er3+ doped chlorides are more than two orders of magnitude better in terms of emission lifetimes and sigma-tau product than the fluoride crystals. 
    more » « less
  3. Abstract

    Room temperature semiconductor detector (RTSD) materials for γ‐ray and X‐ray radiation are in great demand for the nonproliferation of nuclear materials as well as for biomedical imaging applications. Halide perovskites have attracted great attention as emerging and promising RTSD materials. In this contribution, the material synthesis, purification, crystal growth, crystal structure, photoluminescence properties, ionizing radiation detection performance, and electronic structure of the inorganic halide perovskitoid compound TlPbI3are reported on. This compound crystallizes in the ABX3non‐perovskite crystal structure with a high density ofd = 6.488 g·cm–3, has a wide bandgap of 2.25 eV, and melts congruently at a low temperature of 360 °C without phase transitions, which allows for facile growth of high quality crystals with few thermally‐activated defects. High‐quality TlPbI3single crystals of centimeter‐size are grown using the vertical Bridgman method using purified raw materials. A high electrical resistivity of ≈1012 Ω·cm is readily obtainable, and detectors made of TlPbI3single crystals are highly photoresponsive to Ag KαX‐rays (22.4 keV), and detects 122 keV γ‐rays from57Co radiation source. The electron mobility‐lifetime productµeτewas estimated at 1.8 × 10–5cm2·V–1. A high relative static dielectric constant of 35.0 indicates strong capability in screening carrier scattering and charged defects in TlPbI3.

     
    more » « less
  4. ZrSe3 with a quasi-one-dimensional (quasi-1D) crystal structure belongs to the transition metal trichalcogenides (TMTCs) family. Owing to its unique optical, electrical, and optoelectrical properties, ZrSe3 is promising for applications in field effect transistors, photodetectors, and thermoelectrics. Compared with extensive studies of the above-mentioned physical properties, the thermal properties of ZrSe3 have not been experimentally investigated. Here, we report the crystal growth and thermal and optical properties of ZrSe3. Millimeter-sized single crystalline ZrSe3 flakes were prepared using a chemical vapor transport method. These flakes could be exfoliated into microribbons by liquid-phase exfoliation. The transmission electron microscope studies suggested that the obtained microribbons were single crystals along the chain axis. ZrSe3 exhibited a specific heat of 0.311 J g−1 K−1 at 300 K, close to the calculated value of the Dulong–Petit limit. The fitting of low-temperature specific heat led to a Debye temperature of 110 K and an average sound velocity of 2122 m s−1. The thermal conductivity of a polycrystalline ZrSe3 sample exhibited a maximum value of 10.4 ± 1.9 W m−1 K−1 at 40 K. The thermal conductivity decreased above 40 K and reached a room-temperature value of 5.4 ± 1.3 W m−1 K−1. The Debye model fitting of the solid thermal conductivity agreed well with the experimental data below 200 K but showed a deviation at high temperatures, indicating that optical phonons could substantially contribute to thermal transport at high temperatures. The calculated phonon mean free path decreased with temperatures between 2 and 21 K. The mean free path at 2 K approached 3 μm, which was similar to the grain size of the polycrystalline sample. This work provides useful insights into the preparation and thermal properties of quasi-1D ZrSe3. 
    more » « less
  5. null (Ed.)
    Manganese doped inorganic halide perovskites continue to be of current interest for applications in light emitting devices and down-converters in solar cells. In this work we prepared Mn doped CsPbCl3 (Mn: CPC) bulk crystals and nanoparticles (NPs) and compared their emission properties. Bulk crystals were grown from the melt by vertical Bridgman technique and NPs were synthesized using a microwave assisted method. Under ultraviolet excitation at 350 nm, bulk crystal and NPs exhibited a broad orange emission centered in the ~600 nm range at room temperature. The broadbandemission was assigned to the intra-3d transition 4T1 → 6A1 of Mn2+ ions incorporated in the CPC host lattice. The Mn2+emission lifetimes were nearly exponential with values of 1.1 ms for NPs and 0.7 ms for the bulk crystal. NPs also showed exciton emission peaking at ~402 nm, whereas the bulk crystal exhibited no emission near the band-edge. Instead, the bulk material revealed a weak below-gap emission in the 450-550 nm region suggesting the existence of defect states. The excitation spectra for the orange Mn2+ emission from NPs and bulk crystals of Mn: CPC were significantly different indicating distinct excitation pathways. The excitation spectrum of the orange Mn2+ emission from NPs showed excitonic structure similar to the absorption spectrum suggesting an efficient energy transfer from excitons to Mn2+ ions. In contrast, UV excitation was less efficient for the bulk crystal and the excitation was dominated by below-gap excitation bands centered at 427 and 500 nm. 
    more » « less