Abstract Iron (Fe) uptake and translocation in plants are fine-tuned by complex mechanisms that are not yet fully understood. In Arabidopsis thaliana, local regulation of Fe homeostasis at the root level has been extensively studied and is better understood than the systemic shoot-to-root regulation. While the root system is solely a sink tissue that depends on photosynthates translocated from source tissues, the shoot system is a more complex tissue, where sink and source tissues occur synchronously. In this study, and to gain better insight into the Fe deficiency responses in leaves, we overexpressed Zinc/Iron-regulated transporter-like Protein (ZIP5), an Fe/Zn transporter, in phloem-loading cells (proSUC2::AtZIP5) and determined the timing of Fe deficiency responses in sink (young leaves and roots) and source tissues (leaves). Transgenic lines overexpressing ZIP5 in companion cells displayed increased sensitivity to Fe deficiency in root growth assays. Moreover, young leaves and roots (sink tissues) displayed either delayed or dampened transcriptional responses to Fe deficiency compared to wild-type (WT) plants. We also took advantage of the Arabidopsis mutant nas4x-1 to explore Fe transcriptional responses in the opposite scenario, where Fe is retained in the vasculature but in an unavailable and precipitated form. In contrast to proSUC2::AtZIP5 plants, nas4x-1 young leaves and roots displayed a robust and constitutive Fe deficiency response, while mature leaves showed a delayed and dampened Fe deficiency response compared to WT plants. Altogether, our data provide evidence suggesting that Fe sensing within leaves can also occur locally in a leaf-specific manner.
more »
« less
Loss of OPT3 function decreases phloem copper levels and impairs crosstalk between copper and iron homeostasis and shoot-to-root signaling in Arabidopsis thaliana
Abstract Copper (Cu) and iron (Fe) are essential micronutrients that are toxic when accumulating in excess in cells. Thus, their uptake by roots is tightly regulated. While plants sense and respond to local Cu availability, the systemic regulation of Cu uptake has not been documented in contrast to local and systemic control of Fe uptake. Fe abundance in the phloem has been suggested to act systemically, regulating the expression of Fe uptake genes in roots. Consistently, shoot-to-root Fe signaling is disrupted in Arabidopsis thaliana mutants lacking the phloem companion cell-localized Fe transporter, OLIGOPEPTIDE TRANSPORTER 3 (AtOPT3). We report that AtOPT3 also transports Cu in heterologous systems and contributes to its delivery from sources to sinks in planta. The opt3 mutant contained less Cu in the phloem, was sensitive to Cu deficiency and mounted a transcriptional Cu deficiency response in roots and young leaves. Feeding the opt3 mutant and Cu- or Fe-deficient wild-type seedlings with Cu or Fe via the phloem in leaves downregulated the expression of both Cu- and Fe-deficiency marker genes in roots. These data suggest the existence of shoot-to-root Cu signaling, highlight the complexity of Cu/Fe interactions, and the role of AtOPT3 in fine-tuning root transcriptional responses to the plant Cu and Fe needs.
more »
« less
- PAR ID:
- 10411610
- Date Published:
- Journal Name:
- The Plant Cell
- ISSN:
- 1040-4651
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Copper and iron are micronutrients but are toxic when they accumulate in cells in excess. Crosstalk between copper and iron homeostasis in Arabidopsis thaliana has been documented and includes iron accumulation under copper deficiency and vice versa. However, molecular components of this crosstalk are not well understood. Iron concentration in the phloem has been suggested to act systemically, negatively regulating iron uptake to the root. Consistently, systemic iron signaling is disrupted in A. thaliana mutants lacking the phloem companion cell-localized iron transporter, AtOPT3, and opt3 mutants hyperaccumulate iron. Here, we report that in addition to iron, AtOPT3 transports copper and mediates copper loading to the phloem for delivery from sources to sinks. As a result of this function, the opt3-3 mutant accumulates less copper in the phloem, roots, developing leaves and embryos compared to wild type, is sensitive to copper deficiency, and mounts transcriptional copper deficiency response. Because copper deficiency has been shown to stimulate iron accumulation, we propose that reduced copper concentration in the phloem of the opt3-3 mutant and its constitutive copper deficiency contribute to iron overaccumulation in its tissues. Our data assign new transport capabilities to AtOPT3 and increase understanding of copper - iron interactions and signaling.more » « less
-
Abstract Glutaredoxins (GRXs) are small oxidoreductase enzymes that can reduce disulfide bonds in target proteins. The class III GRX gene family is unique to land plants, andArabidopsis thalianahas 21 class III GRXs, which remain largely uncharacterized. About 80% ofA. thalianaclass III GRXs are transcriptionally regulated by nitrate, and several recent studies have suggested roles for these GRXs in nitrogen signaling. Our objective was to functionally characterize two nitrate‐induced GRX genes,AtGRXS5andAtGRXS8, defining their roles in signaling and development in theA. thalianaroot. We demonstrated thatAtGRXS5andAtGRXS8are primarily expressed in root and shoot vasculature (phloem), and that the corresponding GRX proteins display nucleo‐cytosolic subcellular localization. Ectopic expression ofAtGRXS8in transgenic plants caused major alterations in root system architecture: Normal primary root development, but a near absence of lateral roots. RNA sequencing demonstrated that the roots ofAtGRXS8‐overexpressing plants show strongly reduced transcript abundance for many primary nitrate response genes, including the major high‐affinity nitrate transporters. Correspondingly, high‐affinity nitrate uptake and the transport of nitrate from roots to shoots are compromised inAtGRXS8‐overexpressing plants. Finally, we demonstrated that the AtGRXS8 protein can physically interact with the TGA1 and TGA4 transcription factors, which are central regulators of early transcriptional responses to nitrate inA. thalianaroots. Overall, these results suggest thatAtGRXS8acts to quench both transcriptional and developmental aspects of primary nitrate response, potentially by interfering with the activity of the TGA1 and TGA4 transcription factors.more » « less
-
Phosphorus (P) and iron (Fe) deficiency are major limiting factors for plant productivity worldwide. White lupin (Lupinus albus L.) has become a model plant for understanding plant adaptations to P and Fe deficiency, because of its ability to form cluster roots, bottle-brush-like root structures play an important role in the uptake of P and Fe from soil. However, little is known about the signaling pathways involved in sensing and responding to P and Fe deficiency. Sucrose, sent in increased concentrations from the shoot to the root, has been identified as a long-distance signal of both P and Fe deficiency. To unravel the responses to sucrose as a signal, we performed Oxford Nanopore cDNA sequencing of white lupin roots treated with sucrose for 10, 15, or 20 min compared to untreated controls. We identified a set of 17 genes, including 2 bHLH transcription factors, that were up-regulated at all three time points of sucrose treatment. GO (gene ontology) analysis revealed enrichment of auxin and gibberellin responses as early as 10 min after sucrose addition, as well as the emerging of ethylene responses at 20 min of sucrose treatment, indicating a sequential involvement of these hormones in plant responses to sucrose.more » « less
-
Abstract The precise onset of flowering is crucial to ensure successful plant reproduction. The geneFLOWERING LOCUS T(FT) encodes florigen, a mobile signal produced in leaves that initiates flowering at the shoot apical meristem. In response to seasonal changes,FTis induced in phloem companion cells located in distal leaf regions. Thus far, a detailed molecular characterization of theFT-expressing cells has been lacking. Here, we used bulk nuclei RNA-seq and single nuclei RNA (snRNA)-seq to investigate gene expression inFT-expressing cells and other phloem companion cells. Our bulk nuclei RNA-seq demonstrated thatFT-expressing cells in cotyledons and in true leaves differed transcriptionally. Within the true leaves, our snRNA-seq analysis revealed that companion cells with highFTexpression form a unique cluster in which many genes involved in ATP biosynthesis are highly upregulated. The cluster also expresses other genes encoding small proteins, including the flowering and stem growth inducer FPF1-LIKE PROTEIN 1 (FLP1) and the anti-florigen BROTHER OF FT AND TFL1 (BFT). In addition, we found that the promoters ofFTand the genes co-expressed withFTin the cluster were enriched for the consensus binding motifs of NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1). Overexpression of the paralogousNIGT1.2andNIGT1.4repressedFTexpression and significantly delayed flowering under nitrogen-rich conditions, consistent with NIGT1s acting as nitrogen-dependentFTrepressors. Taken together, our results demonstrate that majorFT-expressing cells show a distinct expression profile that suggests that these cells may produce multiple systemic signals to regulate plant growth and development.more » « less
An official website of the United States government

