Abstract Foreshocks are the only currently widely identified precursory seismic behavior, yet their utility and even identifiability are problematic, in part because of extreme variation in behavior. Here, we establish some global trends that help identify the expected frequency of foreshocks as well the type of earthquake most prone to foreshocks. We establish these tendencies using the global earthquake catalog of the U.S. Geological Survey National Earthquake Information Center with a completeness level of magnitude 5 and mainshocks with Mw≥7.0. Foreshocks are identified using three clustering algorithms to address the challenge of distinguishing foreshocks from background activity. The methods give a range of 15%–43% of large mainshocks having at least one foreshock but a narrower range of 13%–26% having at least one foreshock with magnitude within two units of the mainshock magnitude. These observed global foreshock rates are similar to regional values for a completeness level of magnitude 3 using the same detection conditions. The foreshock sequences have distinctive characteristics with the global composite population b-values being lower for foreshocks than for aftershocks, an attribute that is also manifested in synthetic catalogs computed by epidemic-type aftershock sequences, which intrinsically involves only cascading processes. Focal mechanism similarity of foreshocks relative to mainshocks is more pronounced than for aftershocks. Despite these distinguishing characteristics of foreshock sequences, the conditions that promote high foreshock productivity are similar to those that promote high aftershock productivity. For instance, a modestly higher percentage of interplate mainshocks have foreshocks than intraplate mainshocks, and reverse faulting events slightly more commonly have foreshocks than normal or strike-slip-faulting mainshocks. The western circum-Pacific is prone to having slightly more foreshock activity than the eastern circum-Pacific.
more »
« less
Regional Characteristics of Observable Foreshocks
Abstract Measures of foreshock occurrence are systematically examined using earthquake catalogs for eight regions (Italy, southern California, northern California, Costa Rica, Onshore Japan, Alaska, Turkey, and Greece) after imposing a magnitude ≥3.0 completeness level. Foreshocks are identified using three approaches: a magnitude-dependent space + fixed-time windowing method, a nearest-neighbor clustering method, and a modified magnitude-dependent space + variable-time windowing method. The method with fixed-time windows systematically yields higher counts of foreshocks than the other two clustering methods. We find similar counts of foreshocks across the three methods when the magnitude aperture is equalized by including only earthquakes in the magnitude range M*−2≤ M< M*, in which M* is the mainshock magnitude. For most of the catalogs (excluding Italy and southern California), the measured b-values of the foreshocks of all region-specific mainshocks are lower by 0.1–0.2 than b-values of respective aftershocks. Allowing for variable-time windows results in relatively high probabilities of having at least one foreshock in Italy (∼43%–56%), compared to other regional catalogs. Foreshock probabilities decrease to 14%–41% for regions such as Turkey, Greece, and Costa Rica. Similar trends are found when requiring at least five foreshocks in a sequence to be considered. Estimates of foreshock probabilities for each mainshock are method dependent; however, consistent regional trends exist regardless of method, with regions such as Italy and southern California producing more observable foreshocks than Turkey and Greece. Some regions with relatively high background seismicity have comparatively low probabilities of detectable foreshock activity when using methods that account for variable background, possibly due to depletion of near-failure fault conditions by background activity.
more »
« less
- PAR ID:
- 10412022
- Date Published:
- Journal Name:
- Seismological Research Letters
- Volume:
- 94
- Issue:
- 1
- ISSN:
- 0895-0695
- Page Range / eLocation ID:
- 428 to 442
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Foreshocks provide valuable information on the nucleation process of an upcoming large earthquake. We applied high‐resolution similar‐waveform techniques for earthquake detection, location, and source parameter estimation to understand the space‐time evolution of a foreshock sequence and its relationship to the mainshock hypocenter. The 1999Mw7.1 Hector Mine, California, earthquake was preceded by 50 foreshocks (−0.4 ≤ M ≤ 3.7) during the 20 hr before the mainshock. Foreshock activity did not accelerate leading up to the mainshock. Their locations moved north with time, rupturing adjacent areas along the fault plane with little overlap, but remained within a compact <2 km3volume. The mainshock initiated at a location where previous foreshocks had locally increased the shear stress. These observations are consistent with a triggered cascade of stress transfer, where previous foreshocks load adjacent fault patches to rupture as additional foreshocks, and eventually the mainshock.more » « less
-
Abstract Recognizing earthquakes as foreshocks in real time would provide a valuable forecasting capability. In a recent study, Gulia and Wiemer (2019) proposed a traffic-light system that relies on abrupt changes in b-values relative to background values. The approach utilizes high-resolution earthquake catalogs to monitor localized regions around the largest events and distinguish foreshock sequences (reduced b-values) from aftershock sequences (increased b-values). The recent well-recorded earthquake foreshock sequences in Ridgecrest, California, and Maria Antonia, Puerto Rico, provide an opportunity to test the procedure. For Ridgecrest, our b-value time series indicates an elevated risk of a larger impending earthquake during the Mw 6.4 foreshock sequence and provides an ambiguous identification of the onset of the Mw 7.1 aftershock sequence. However, the exact result depends strongly on expert judgment. Monte Carlo sampling across a range of reasonable decisions most often results in ambiguous warning levels. In the case of the Puerto Rico sequence, we record significant drops in b-value prior to and following the largest event (Mw 6.4) in the sequence. The b-value has still not returned to background levels (12 February 2020). The Ridgecrest sequence roughly conforms to expectations; the Puerto Rico sequence will only do so if a larger event occurs in the future with an ensuing b-value increase. Any real-time implementation of this approach will require dense instrumentation, consistent (versioned) low completeness catalogs, well-calibrated maps of regionalized background b-values, systematic real-time catalog production, and robust decision making about the event source volumes to analyze.more » « less
-
Abstract On October 28, 2022, a moment magnitude (Mw) 3.8 earthquake occurred in Goesan, South Korea, typically characterized as a stable continental region. Herein, we analyze 42 earthquakes, including the Mw 3.8 earthquake, the largest foreshock (Mw 3.3), which preceded the mainshock by 17 s, and the largest aftershock (Mw 2.9). The primary aim of this study is to identify interactions among the seismic events. To this end, we utilized the permanent seismic networks with the closest station at 8.3 km from the epicenter, and the temporary network deployed eight hours after the mainshock’s occurrence. Relocation results delineate that the mainshock occurred at the southeastern tip of the hypocenter distribution of three foreshocks, trending west-northwest–east-southeast. The aftershocks form an overall spatially diffused seismic pattern that propagates toward both ends of the inferred lineament in the downdip direction. The rupture directivity of the mainshock, along with waveform similarity across the mainshock and foreshocks, confirms the inferred geometry, corresponding well with the focal mechanisms of the mainshock and the largest foreshock. We demonstrate that the change in Coulomb failure stress (ΔCFS) by the largest foreshock was positive where the mainshock occurred and that the mainshock generated ΔCFS capable of triggering the propagation of the aftershocks.more » « less
-
Abstract Foreshocks can provide valuable information about possible nucleation process of a mainshock. However, their physical mechanisms are still under debate. In this study, we present a comprehensive analysis of the earthquake sequence preceding the 2010 Mw7.2 El Mayor‐Cucapah mainshock, including waveform detection of missing smaller events, relative relocation, and source parameter analysis. Based on a template matching method, we find a tenfold increase in the number of earthquakes than reported in the Southern California Seismic Network catalog. The entire sequence exhibits nearly continuous episodes of foreshocks that can be loosely separated into two active clusters. Relocated foreshocks show several seismicity streaks at depth, with a consistently active cluster at depths between 14 and 16 km where the mainshock was nucleated. Stress drop measurements from a spectral ratio approach based on empirical Green's functions show a range between 3.8 and 41.7 MPa with a median of 13.0 MPa and no clear temporal variations. The relocation results, together with the source patches estimated from earthquake corner frequencies, revealed a migration front toward the mainshock hypocenter within last 8 hr and a chain of active burst immediately 6 min prior to the mainshock. Our results support combined effects of aseismic slip and cascading failure on the evolution of foreshocks.more » « less
An official website of the United States government

