skip to main content


Title: Dynamical Modeling of Galaxies and Supermassive Black Holes: Axisymmetry in Triaxial Schwarzschild Orbit Superposition Models
Abstract We present a detailed analysis of the behavior of the triaxial Schwarzschild orbit superposition method near the axisymmetric limit. Orbit superposition modeling is the primary method used to determine dynamical masses of supermassive black holes ( M BH ) in nearby galaxies; however, prior studies have reported conflicting results when comparing the outcome from axisymmetric orbit codes with that from a triaxial orbit code in the axisymmetric limit. We show that in order to achieve (oblate) axisymmetry in a triaxial code, care needs to be taken to axisymmetrize the short-axis tube orbits and to exclude both the long-axis tube and box orbits from the orbit library. Using up to 12 Gauss–Hermite moments of the line-of-sight velocity distributions as constraints, we demonstrate the effects of orbit types on the best-fit M BH in orbit modeling of the massive elliptical galaxy NGC 1453 reported in Liepold et al. In addition, we verify the efficacy of our updated code on a mock galaxy data set. We identify a subset of slowly precessing quasi-planar orbits for which the typical integration times can be insufficient to fully capture the equilibrium orbital behavior in both axisymmetric and triaxial systems with central black holes. Further investigation is needed for a more reliable treatment of these orbits.  more » « less
Award ID(s):
1817100
NSF-PAR ID:
10412126
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
254
Issue:
2
ISSN:
0067-0049
Page Range / eLocation ID:
25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a stellar dynamical mass measurement of a newly detected supermassive black hole (SMBH) at the center of the fast-rotating, massive elliptical galaxy NGC 2693 as part of the MASSIVE survey. We combine high signal-to-noise ratio integral field spectroscopy (IFS) from the Gemini Multi-Object Spectrograph with wide-field data from the Mitchell Spectrograph at McDonald Observatory to extract and model stellar kinematics of NGC 2693 from the central ∼150 pc out to ∼2.5 effective radii. Observations from Hubble Space Telescope WFC3 are used to determine the stellar light distribution. We perform fully triaxial Schwarzschild orbit modeling using the latest TriOS code and a Bayesian search in 6D galaxy model parameter space to determine NGC 2693's SMBH mass (MBH), stellar mass-to-light ratio, dark matter content, and intrinsic shape. We findMBH=1.7±0.4×109Mand a triaxial intrinsic shape with axis ratiosp=b/a= 0.902 ± 0.009 andq=c/a=0.7210.010+0.011, triaxiality parameterT= 0.39 ± 0.04. In comparison, the best-fit orbit model in the axisymmetric limit and (cylindrical) Jeans anisotropic model of NGC 2693 preferMBH=2.4±0.6×109MandMBH=2.9±0.3×109M, respectively. Neither model can account for the non-axisymmetric stellar velocity features present in the IFS data.

     
    more » « less
  2. Abstract

    The three-dimensional intrinsic shape of a galaxy and the mass of the central supermassive black hole provide key insight into the galaxy’s growth history over cosmic time. Standard assumptions of a spherical or axisymmetric shape can be simplistic and can bias the black hole mass inferred from the motions of stars within a galaxy. Here, we present spatially resolved stellar kinematics of M87 over a two-dimensional 250″ × 300″ contiguous field covering a radial range of 50 pc–12 kpc from integral-field spectroscopic observations at the Keck II Telescope. From about 5 kpc and outward, we detect a prominent 25 km s−1rotational pattern, in which the kinematic axis (connecting the maximal receding and approaching velocities) is 40° misaligned with the photometric major axis of M87. The rotational amplitude and misalignment angle both decrease in the inner 5 kpc. Such misaligned and twisted velocity fields are a hallmark of triaxiality, indicating that M87 is not an axisymmetrically shaped galaxy. Triaxial Schwarzschild orbit modeling with more than 4000 observational constraints enabled us to determine simultaneously the shape and mass parameters. The models incorporate a radially declining profile for the stellar mass-to-light ratio suggested by stellar population studies. We find that M87 is strongly triaxial, with ratios ofp= 0.845 for the middle-to-long principal axes andq= 0.722 for the short-to-long principal axes, and determine the black hole mass to be(5.370.25+0.37±0.22)×109M, where the second error indicates the systematic uncertainty associated with the distance to M87.

     
    more » « less
  3. ABSTRACT

    We report the discovery of a (1.0 ± 0.28) × 1010 M⊙ supermassive black hole (BH) at the centre of NGC 708, the Brightest Cluster Galaxy of Abell 262. Such high BH masses are very rare and allow to investigate BH–host galaxy scaling relations at the high mass end, which in turn provide hints about the (co)evolution of such systems. NGC 708 is found to be an outlier in all the canonical scaling relations except for those linking the BH mass to the core properties. The galaxy mass-to-light ratio points to a Kroupa IMF rather than Salpeter, with this finding confirmed using photometry in two different bands. We perform this analysis using our novel triaxial Schwarzschild code to integrate orbits in a five-dimensional space, using a semiparametric deprojected light density to build the potential and non-parametric line-of-sight velocity distributions (LOSVDs) derived from long-slit spectra recently acquired at Large Binocular Telescope (LBT) to exploit the full information in the kinematic. We find that the galaxy geometry changes as a function of the radius going from prolate, nearly spherical in the central regions to triaxial at large radii, highlighting the need to go beyond constant shape profiles. Our analysis is only the second of its kind and will systematically be used in the future to hunt supermassive BH in giant ellipticals.

     
    more » « less
  4. ABSTRACT

    Radio-loud active galactic nuclei (RLAGNs) are a unique AGN population and were thought to be preferentially associated with supermassive black holes (SMBHs) at low accretion rates. They could impact the host galaxy evolution by expelling cold gas through the jet-mode feedback. In this work, we studied CO(6−5) line emission and continuum emission in a high-redshift radio galaxy, MRC 0152−209, at z = 1.92 using ALMA (Atacama Large Millimeter/submillimeter Array) up to a 0.024″ resolution (corresponding to ∼200 pc at z = 1.92). This system is a starburst major merger comprising two galaxies: the north-west (NW) galaxy hosting the RLAGN with jet kinetic power Ljet ≳ 2 × 1046  erg s−1 and the other galaxy to the south-east (SE). Based on the spectral energy distribution fitting for the entire system (NW+SE galaxies), we find an AGN bolometric luminosity LAGN, bol ∼ 3 × 1046  erg s−1 with a lower limit of ∼0.9 × 1046  erg s−1 for the RLAGN. We estimate the black hole mass through MBH–M⋆ scaling relations and find an Eddington ratio of λEdd ∼ 0.07–4 conservatively by adopting the lower limit of LAGN, bol and considering the dispersion of the scaling relation. These results suggest that the RLAGN is radiatively efficient and the powerful jets could be launched from a super-Eddington accretion disc. ALMA Cycle 6 observations further reveal a massive (${M}_\mathrm{H_2}=(1.1-2.3)\times 10^9\ \rm M_\odot$), compact (∼500 pc), and monopolar molecular outflow perpendicular to the jet axis. The corresponding mass outflow rate ($1200^{+300}_{-300}-2600^{+600}_{-600}\ \mathrm{M_\odot }\ \rm yr^{-1}$) is comparable with the star formation rate of at least $\sim 2100\ \mathrm{M_\odot }\ \rm yr^{-1}$. Depending on the outflowing molecular gas mass, the outflow kinetic power/LAGN, bol ratio of ∼0.008–0.02, and momentum boost factor of ∼3–24 agree with a radiative-mode AGN feedback scenario. On the other hand, the jets can also drive the molecular outflow within its lifetime of ∼2 × 105 yr without additional energy supply from AGN radiation. The jet-mode feedback is then capable of removing all cold gas from the host galaxy through the long-term, episodic launching of jets. Our study reveals a unique object where starburst activity, powerful jets, and rapid BH growth co-exist, which may represent a fundamental stage of AGN-host galaxy co-evolution.

     
    more » « less
  5. ABSTRACT

    Most dynamical models of galaxies to date assume axisymmetry, which is not representative of a significant fraction of massive galaxies. We have built triaxial orbit-superposition Schwarzschild models of galaxies observed by the SAMI Galaxy Survey, in order to reconstruct their inner orbital structure and mass distribution. The sample consists of 153 passive galaxies with total stellar masses in the range 109.5 to $10^{12} \, {\rm M}_{\odot }$. We present an analysis of the internal structures and intrinsic properties of these galaxies as a function of their environment. We measure their environment using three proxies: central or satellite designation, halo mass and local 5th nearest neighbour galaxy density. We find that although these intrinsic properties correlate most strongly with stellar mass, environment does play a secondary role: at fixed stellar mass, galaxies in the densest regions are more radially anisotropic. In addition, central galaxies, and galaxies in high local densities show lower values of edge-on spin parameter proxy λRe, EO. We also find suggestions of a possible trend of the fractions of orbits with environment for lower mass galaxies (between 109.5 and $10^{11} \, {\rm M}_{\odot }$) such that, at fixed stellar mass, galaxies in higher local densities and halo mass have higher fractions of hot orbits and lower fractions of warm orbits. Our results demonstrate that after stellar mass, environment does play a role in shaping present-day passive galaxies.

     
    more » « less