skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Point-defect avalanches mediate grain boundary diffusion
Abstract Grain boundary diffusion in polycrystalline materials is a physical phenomenon of great fundamental interest and practical significance. Although accelerated atomic transport along grain boundaries has been known for decades, atomic-level understanding of diffusion mechanisms remains poor. Previous atomistic simulations focused on low temperatures where the grain boundary structure is ordered or high temperatures where it is highly disordered. Here, we conduct molecular dynamics simulations of grain boundary diffusion at intermediate temperatures most relevant to applications. A surprising result of this work is the observation of intermittent GB diffusion behavior and its strong system-size dependence unseen in previous work. Both effects are found to originate from thermally activated point-defect avalanches. We identify the length and time scales of the avalanches and link their formation to dynamic heterogeneity in partially disordered systems. Our findings have implications for future computer modeling of grain boundary diffusion and mass transport in nano-scale materials.  more » « less
Award ID(s):
2103431
PAR ID:
10412327
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Communications Materials
Volume:
3
Issue:
1
ISSN:
2662-4443
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Grain boundaries can greatly affect the transport properties of polycrystalline materials, particularly when the grain size approaches the nanoscale. While grain boundaries often enhance diffusion by providing a fast pathway for chemical transport, some material systems, such as those of solid oxide fuel cells and battery cathode particles, exhibit the opposite behavior, where grain boundaries act to hinder diffusion. To facilitate the study of systems with hindered grain boundary diffusion, we propose a model that utilizes the smoothed boundary method to simulate the dynamic concentration evolution in polycrystalline systems. The model employs domain parameters with diffuse interfaces to describe the grains, thereby enabling solutions with explicit consideration of their complex geometries. The intrinsic error arising from the diffuse interface approach employed in our proposed model is explored by comparing the results against a sharp interface model for a variety of parameter sets. Finally, two case studies are considered to demonstrate potential applications of the model. First, a nanocrystalline yttria-stabilized zirconia solid oxide fuel cell system is investigated, and the effective diffusivities are extracted from the simulation results and are compared to the values obtained through mean-field approximations. Second, the concentration evolution during lithiation of a polycrystalline battery cathode particle is simulated to demonstrate the method’s capability. 
    more » « less
  2. In this paper, we present concurrent atomistic-continuum (CAC) simulations of the hydrogen (H) diffusion along a grain boundary (GB), nearby which a large population of dislocations are piled up, in a plastically deformed bi-crystalline bcc iron sample. With the microscale dislocation slip and the atomic structure evolution at the GB being simultaneously retained, our main findings are: (i) the accumulation of tens of dislocations near the H-charged GB can induce a local internal stress as high as 3 GPa; (ii) the more dislocations piled up at the GB, the slower the H diffusion ahead of the slip–GB intersection; and (iii) H atoms diffuse fast behind the pileup tip, get trapped within the GB, and diffuse slowly ahead of the pileup tip. The CAC simulation-predicted local H diffusivity, Dpileup−tip, and local stresses, σ, are correlated with each other. We then consolidate such correlations into a mechanics model by considering the dislocation pileup as an Eshelby inclusion. These findings will provide researchers with opportunities to: (a) characterize the interplay between plasticity, H diffusion, and crack initiation underlying H-induced cracking (HIC); (b) develop mechanism-based constitutive rules to be used in diffusion–plasticity coupling models for understanding the interplay between mechanical and mass transport in materials at the continuum level; and (c) connect the atomistic deformation physics of polycrystalline materials with their performance in aqueous environments, which is currently difficult to achieve in experiments. 
    more » « less
  3. Refractory multi-principal element alloys exhibiting promising mechanical properties such as excellent strength retention at elevated temperatures have been attracting increasing attention. Although their inherent chemical complexity is considered a defining feature, a challenge arises in predicting local chemical ordering, particularly in grain boundary regions with an enhanced structural disorder. In this study, we use atomistic simulations of a large group of bicrystal models to sample a wide variety of interfacial sites (grain boundary) in NbMoTaW and explore emergent trends in interfacial segregation and the underlying structural and chemical driving factors. Sampling hundreds of bicrystals along the [001] symmetric tilt axis and analyzing more than one hundred and thirty thousand grain boundary sites with a variety of local atomic environments, we uncover segregation trends in NbMoTaW. While Nb is the dominant segregant, more notable are the segregation patterns that deviate from expected behavior and mark situations where local structural and chemical driving forces lead to interesting segregation events. For example, incomplete depletion of Ta in low-angle boundaries results from chemical pinning due to favorable local compositional environments associated with chemical short-range ordering. Finally, machine learning models capturing and comparing the structural and chemical features of interfacial sites are developed to weigh their relative importance and contributions to segregation tendency, revealing a significant increase in predictive capability when including local chemical information. Overall, this work, highlighting the complex interplay between the local grain boundary structure and chemical short-range ordering, suggests tunable segregation and chemical ordering by tailoring grain boundary structure in multi-principal element alloys. 
    more » « less
  4. Nanocrystalline silicon can have unique thermal transport and mechanical properties governed by its constituent grain microstructure. Here, we use phonon ray-tracing and molecular dynamics simulations to demonstrate the largely tunable thermomechanical behaviors with varying grain sizes (a0) and aspect ratios (ξ). Our work shows that, by selectively increasing the grain size along the heat transfer direction while keeping the grain area constant, the in-plane lattice thermal conductivity (kx) increases more significantly than the cross-plane lattice thermal conductivity (ky) due to anisotropic phonon–grain boundary scattering. While kx generally increases with increasing ξ, a critical value exists for ξ at which kx reaches its maximum. Beyond this transition point, further increases in ξ result in a decrease in kx due to substantial scattering of low-frequency phonons with anisotropic grain boundaries. Moreover, we observe reductions in the elastic and shear modulus with decreasing grain size, and this lattice softening leads to significant reductions in phonon group velocity and thermal conductivity. By considering both thermal and mechanical size effects, we identify two distinct regimes of thermal transport, in which anisotropic phonon–grain boundary scattering becomes more appreciable at low temperatures and lattice softening becomes more pronounced at high temperatures. Through phonon spectral analysis, we attribute the significant thermal conductivity anisotropy in nanograined silicon to grain boundary scattering of low-frequency phonons and the softening-driven thermal conductivity reduction to Umklapp scattering of high-frequency phonons. These findings offer insights into the manipulation of thermomechanical properties of nanocrystalline silicon via microstructure engineering, carrying profound implications for the development of future nanomaterials. 
    more » « less
  5. Recognition of the role of extended defects on local phase transitions has led to the conceptualization of the defect phase, localized thermodynamically stable interfacial states that have since been applied in a myriad of material systems to realize significant enhancements in material properties. Here, we explore the kinetics of grain boundary confined amorphous defect phases, utilizing the high temperature and scanning rates afforded by ultrafast differential scanning calorimetry to apply targeted annealing/quenching treatments at high rates capable of capturing the kinetic behavior. Four Al-based nanocrystalline alloys, including two binary systems, Al–Ni and Al–Y, and two ternary systems, Al–Mg–Y and Al–Ni–Y, are selected to probe the materials design space (enthalpy of mixing, enthalpy of segregation, chemical complexity) for amorphous defect phase formation and stability, with correlative transmission electron microscopy applied to link phase evolution and grain stability to nanocalorimetry signatures. A series of targeted isothermal annealing heat treatments is utilized to construct a Time–Temperature-Transformation curve for the Al–Ni system, from which a critical cooling rate of 2400 °C/s was determined for the grain boundary confined disordered-to-ordered transition. Finally, a thermal profile consisting of 1000 repeated annealing sequences was created to quantify the recovery of the amorphous defect phase following sequential annealing treatments, with results indicating remarkable microstructural stability after annealing at temperatures above 90% of the melting temperature. This work contributes to a deeper understanding of grain boundary localized thermodynamics and kinetics, with potential implications for the design and optimization of advanced materials with enhanced stability and performance. 
    more » « less