skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2027

Title: Kinetics of amorphous defect phases measured through ultrafast nanocalorimetry
Recognition of the role of extended defects on local phase transitions has led to the conceptualization of the defect phase, localized thermodynamically stable interfacial states that have since been applied in a myriad of material systems to realize significant enhancements in material properties. Here, we explore the kinetics of grain boundary confined amorphous defect phases, utilizing the high temperature and scanning rates afforded by ultrafast differential scanning calorimetry to apply targeted annealing/quenching treatments at high rates capable of capturing the kinetic behavior. Four Al-based nanocrystalline alloys, including two binary systems, Al–Ni and Al–Y, and two ternary systems, Al–Mg–Y and Al–Ni–Y, are selected to probe the materials design space (enthalpy of mixing, enthalpy of segregation, chemical complexity) for amorphous defect phase formation and stability, with correlative transmission electron microscopy applied to link phase evolution and grain stability to nanocalorimetry signatures. A series of targeted isothermal annealing heat treatments is utilized to construct a Time–Temperature-Transformation curve for the Al–Ni system, from which a critical cooling rate of 2400 °C/s was determined for the grain boundary confined disordered-to-ordered transition. Finally, a thermal profile consisting of 1000 repeated annealing sequences was created to quantify the recovery of the amorphous defect phase following sequential annealing treatments, with results indicating remarkable microstructural stability after annealing at temperatures above 90% of the melting temperature. This work contributes to a deeper understanding of grain boundary localized thermodynamics and kinetics, with potential implications for the design and optimization of advanced materials with enhanced stability and performance.  more » « less
Award ID(s):
2316692
PAR ID:
10650884
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Acta Materialia
Volume:
304
Issue:
C
ISSN:
1359-6454
Page Range / eLocation ID:
121764
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ni-SiOC nanocomposites maintain crystal-amorphous dual-phase nanostructures after high-temperature annealing at different temperatures (600 °C, 800 °C and 1000 °C), while the feature sizes of crystal Ni and amorphous SiOC increase with the annealing temperature. Corresponding to the dual-phase nanostructures, Ni-SiOC nanocomposites exhibit a high strength and good plastic flow stability. In this study, we conducted a He implantation in Ni-SiOC nanocomposites at 300 °C by in-situ transmission electron microscope (TEM) irradiation test. In-situ TEM irradiation revealed that both crystal Ni and amorphous SiOC maintain stability under He irradiation. The 600 °C annealed sample presents a better He irradiation resistance, as manifested by a smaller He-bubble size and lower density. Both the grain boundary and crystal-amorphous phase boundary act as a sink to absorb He and irradiation-induced defects in the Ni matrix. More importantly, amorphous SiOC ceramic is immune to He irradiation damage, contributing to the He irradiation resistance of Ni alloy. 
    more » « less
  2. Abstract This work investigates the effects of doping on both the thermodynamics and kinetics of sintering in aluminum‐doped yttrium oxide nanoparticles (Al‐doped Y2O3), with the objective of delineating their interdependent effects at different stages of the process. Direct measurements of surface and grain boundary energies using differential scanning calorimetry showed that Al‐doping decreases both interfacial energies, leading to an increase in dihedral angle (from 152.7 ± 5.6° to 165.8 ± 5.5°) and, therefore, sintering stress. Densification and grain growth analyses showed that despite this increase in sintering stress, the onset of sintering is delayed for the Al‐doped samples, demonstrating that a large dihedral angle is a necessary but not sufficient condition for densification. The measurements of activation energies for densification and grain growth point out that Al suppresses grain boundary mobility by increasing the activation energy from 400 to 448 kJ/mol, hindering densification at the intermediate stages of sintering. At temperatures above 1150℃, grain growth is activated in the Al‐doped samples, which rapidly releases the accumulated sintering stress and exhibits a higher densification rate than in undoped Y2O3. This study demonstrates a complex interconnectivity between the thermodynamics and kinetics at different temperature ranges of sintering and reinforces the need for a comprehensive description for proper design of sintering aids. 
    more » « less
  3. Abstract This study investigates the fabrication of Fe–Mn–Al–Ni iron-based shape memory alloys (SMAs) using laser powder bed fusion (LPBF) across a range of laser powers. The influence of energy input on material properties was assessed by evaluating the resulting volumetric energy density. Samples were produced under both as-built conditions and subjected to in situ and ex situ treatments to enhance performance. Mechanical properties were characterized through macro-indentation, Profilometry-based Indentation Plastometry (PIP), and nanoindentation techniques, while room-temperature compression testing was conducted to assess superelastic behavior. Microstructural and phase variations were analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that increasing the fabrication power improved the mechanical properties of the as-built SMAs, with the optimal performance achieved at 175 W. In situ/ex situ treatments led to a significant reduction in strength but enhanced ductility by up to 39%, along with a 52% reduction in microhardness for samples fabricated at 175 W. Overall, the LPBF-produced Fe–Mn–Al–Ni SMAs exhibited good strain recovery and stability, comparable to those produced by conventional methods. This work demonstrates the potential of LPBF in developing Fe–Mn–Al–Ni SMAs with properties matching traditionally manufactured counterparts. Graphical Abstract Mechanical behavior and microstructural features of LPBF-fabricated Fe–Mn–Al–Ni SMA under the effects of in situ and ex situ treatments 
    more » « less
  4. Microstructure refinement and optimized alloying can improve metallic alloy performance: stable nanocrystalline (NC) alloys with immiscible second phases, e.g., Cu-Ta, are stronger than unstable NC alloys and their coarse-grained (CG) counterparts, but higher melting point matrices are needed. Hypoeutectic, CG Ni-Y-Zr alloys were produced via arc-melting to explore their potential as high-performance materials. Microstructures were studied to determine phases present, local composition and length scales, while heat treatments allowed investigating microstructural stability. Alloys had a stable, hierarchical microstructure with ~250 nm ultrafine eutectic, ~10 µm dendritic arm spacing and ~1 mm grain size. Hardness and uniaxial compression tests revealed that mechanical properties of Ni-0.5Y-1.8Zr (in wt%) were comparable to Inconel 617 despite the small alloying additions, due to its hierarchical microstructure. Uniaxial compression at 600 °C showed that ternary alloys outperformed Ni-Zr and Ni-Y binary alloys in flow stress and hardening rates, which indicates that the Ni17Y2 phase was an effective reinforcement for the eutectic, which supplemented the matrix hardening due to increased solubility of Zr. Results suggest that ternary Ni-Y-Zr alloys hold significant promise for high temperature applications. 
    more » « less
  5. The high density of aluminum nanocrystals (>10 21  m −3 ) that develop during the primary crystallization in Al-based metallic glasses indicates a high nucleation rate (∼10 18  m −3  s −1 ). Several studies have been advanced to account for the primary crystallization behavior, but none have been developed to completely describe the reaction kinetics. Recently, structural analysis by fluctuation electron microscopy has demonstrated the presence of the Al-like medium range order (MRO) regions as a spatial heterogeneity in as-spun Al 88 Y 7 Fe 5 metallic glass that is representative for the class of Al-based amorphous alloys that develop Al nanocrystals during primary crystallization. From the structural characterization, an MRO seeded nucleation configuration is established, whereby the Al nanocrystals are catalyzed by the MRO core to decrease the nucleation barrier. The MRO seeded nucleation model and the kinetic data from the delay time ( τ) measurement provide a full accounting of the evolution of the Al nanocrystal density (N v ) during the primary crystallization under isothermal annealing treatments. Moreover, the calculated values of the steady state nucleation rates ( J ss ) predicted by the nucleation model agree with the experimental results. Moreover, the model satisfies constraints on the structural, thermodynamic, and kinetic parameters, such as the critical nucleus size, the interface energy, and the volume-free energy driving force that are essential for a fully self-consistent nucleation kinetics analysis. The nucleation kinetics model can be applied more broadly to materials that are characterized by the presence of spatial heterogeneities. 
    more » « less