skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tuning of the electronic and vibrational properties of epitaxial MoS 2 through He-ion beam modification
Abstract Atomically thin transition metal dichalcogenides (TMDs), like MoS 2 with high carrier mobilities and tunable electron dispersions, are unique active material candidates for next generation opto-electronic devices. Previous studies on ion irradiation show great potential applications when applied to two-dimensional (2D) materials, yet have been limited to micron size exfoliated flakes or smaller. To demonstrate the scalability of this method for industrial applications, we report the application of relatively low power (50 keV) 4 He + ion irradiation towards tuning the optoelectronic properties of an epitaxially grown continuous film of MoS 2 at the wafer scale, and demonstrate that precise manipulation of atomistic defects can be achieved in TMD films using ion implanters. The effect of 4 He + ion fluence on the PL and Raman signatures of the irradiated film provides new insights into the type and concentration of defects formed in the MoS 2 lattice, which are quantified through ion beam analysis. PL and Raman spectroscopy indicate that point defects are generated without causing disruption to the underlying lattice structure of the 2D films and hence, this technique can prove to be an effective way to achieve defect-mediated control over the opto-electronic properties of MoS 2 and other 2D materials.  more » « less
Award ID(s):
2039351 1539916
PAR ID:
10412492
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanotechnology
Volume:
34
Issue:
8
ISSN:
0957-4484
Page Range / eLocation ID:
085702
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this contribution, we use heavy ion irradiation and photoluminescence (PL) spectroscopy to demonstrate that defects can be used to tailor the optical properties of two-dimensional molybdenum disulfide (MoS 2 ). Sonicated MoS 2 flakes were deposited onto Si/SiO 2 substrate and subjected to 3 MeV Au 2+ ion irradiation at room temperature to fluences ranging from 1 × 10 12 to 1 × 10 16 cm −2 . We demonstrate that irradiation-induced defects can control optical excitations in the inner core shell of MoS 2 by binding A 1s - and B 1s -excitons, and correlate the exciton peaks to the specific defects introduced with irradiation. The systematic increase of ion fluence produced different defect densities in MoS 2 , which were estimated using B/A exciton ratios and progressively increased with ion fluence. We show that up to the fluences of 1 × 10 14 cm −2 , the MoS 2 lattice remains crystalline and defect densities can be controlled, whereas at higher fluences (≥1 × 10 15 cm −2 ), the large number of introduced defects distorts the excitonic structure of the material. In addition to controlling excitons, defects were used to split bound and free trions, and we demonstrate that at higher fluences (1 × 10 15 cm −2 ), both free and bound trions can be observed in the same PL spectrum. Most importantly, the lifetimes of these states exceed trion and exciton lifetimes in pristine MoS 2 , and PL spectra of irradiated MoS 2 remains unchanged weeks after irradiation experiments. Thus, this work demonstrated the feasibility of engineering novel optical behaviors in low-dimensional materials using heavy ion irradiation. The insights gained from this study will aid in understanding the many-body interactions in low-dimensional materials and may ultimately be used to develop novel materials for optoelectronic applications. 
    more » « less
  2. Two-dimensional transition metal dichalcogenides (2D-TMDs) have been proposed as novel optoelectronic materials for space applications due to their relatively light weight. MoS2 has been shown to have excellent semiconducting and photonic properties. Although the strong interaction of ionizing gamma radiation with bulk materials has been demonstrated, understanding its effect on atomically thin materials has scarcely been investigated. Here, we report the effect of gamma irradiation on the structural and electronic properties of a monolayer of MoS2. We perform Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) studies of MoS2, before and after gamma ray irradiation with varying doses and density functional theory (DFT) calculations. The Raman spectra and XPS results demonstrate that point defects dominate after the gamma irradiation of MoS2. DFT calculations elucidate the electronic properties of MoS2 before and after irradiation. Our work makes several contributions to the field of 2D materials research. First, our study of the electronic density of states and the electronic properties of a MoS2 monolayer irradiated by gamma rays sheds light on the properties of a MoS2 monolayer under gamma irradiation. Second, our study confirms that point defects are formed as a result of gamma irradiation. And third, our DFT calculations qualitatively suggest that the conductivity of the MoS2 monolayer may increase after gamma irradiation due to the creation of additional defect states. 
    more » « less
  3. Abstract Realizing stimulated emission from defects in 2D‐layered semiconductors has the potential to enhance the sensitivity of characterizing their defects. However, stimulated emission from defects in layered materials presents a different set of challenges in carrier lifetime and energy level design and is not achieved so far. Here, photoluminescence (PL) spectroscopy, Raman spectroscopy, and first‐principles theory are combined to reveal an anomalous PL intensity–temperature relation and strong polarization effects at a defect emission peak in annealed multilayer MoS2, suggesting defect‐based stimulated emission. The emergence of stimulated emission behavior is also controllable (by temperature) and reversible. The observed stimulated emission behavior is supported by a three‐level system involving two defect levels from chalcogen vacancies and a pump level from the conduction band edge. First‐principles calculations show that the special indirect gap that enables stimulated emission is not native to pristine bulk MoS2and only emerges under thermal strain. 
    more » « less
  4. ABSTRACT The synthesis of two‐dimensional transition metal dichalcogenide (2D‐TMD) materials gives rise to inherent defects, specifically chalcogen vacancies, due to thermodynamic equilibrium. Techniques such as chemical vapor deposition (CVD), metal‐organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), flux growth method, and mechanical exfoliation produce large‐scale, uniform 2D TMD films, either in bulk or monolayers. However, defects on the film surface impact its quality, and it is necessary to measure defect density. The phonon confinement model indicates that the first‐order Raman band frequency shift depends on defect density. Monolayer Molybdenum disulfide (MoS2) exhibits three phonon dispersions at the Brillouin zone edge (M point): out‐of‐plane optical phonon vibration (ZO), in‐plane longitudinal optical phonon vibration (LO), and in‐plane transverse optical phonon vibration (TO). The LO and ZO modes overlap with Raman in‐plane vibration (𝐸12g) and Raman out‐of‐plane vibration (𝐴1g), respectively, causing peak broadening. In the presence of defects, the Raman 𝐸12gvibration energy decreases due to a reduced restoring force constant. The Raman 𝐴1gvibration trend is random, influenced by both restoring force constant and mass. The study introduces a quantitative defect measurement technique for CVD‐grown monolayer MoS2using Raman 𝐸12gmode, employing sequential data processing algorithms to reveal defect density on the film surface. 
    more » « less
  5. Abstract Manipulation and structural modifications of 2D materials for nanoelectronic and nanofluidic applications remain obstacles to their industrial‐scale implementation. Here, it is demonstrated that a 30 kV focused ion beam can be utilized to engineer defects and tailor the atomic, optoelectronic, and structural properties of monolayer transition metal dichalcogenides (TMDs). Aberration‐corrected scanning transmission electron microscopy is used to reveal the presence of defects with sizes from the single atom to 50 nm in molybdenum (MoS2) and tungsten disulfide (WS2) caused by irradiation doses from 1013to 1016ions cm−2. Irradiated regions across millimeter‐length scales of multiple devices are sampled and analyzed at the atomic scale in order to obtain a quantitative picture of defect sizes and densities. Precise dose value calculations are also presented, which accurately capture the spatial distribution of defects in irradiated 2D materials. Changes in phononic and optoelectronic material properties are probed via Raman and photoluminescence spectroscopy. The dependence of defect properties on sample parameters such as underlying substrate and TMD material is also investigated. The results shown here lend the way to the fabrication and processing of TMD nanodevices. 
    more » « less