Abstract Despite advances in creating dissipative materials with transient properties, such as hydrogels and active droplets, their application remains confined to temporal changes in structural properties. Developing out‐of‐equilibrium materials whose electronic functions are parameterized by a chemical reaction cycle is challenging. Yet, this class of materials is required to construct biomimetic materials. In contrast to traditional chemical reaction cycles that exploit molecularly dissolved building blocks at thermodynamic equilibrium, we show that fiber structures derived from reactive naphthalene diimide (NDI) building blocks can be used as resting states to form far‐from‐equilibrium conductive hydrogels after the addition of chemical fuels. Upon fueling the NDI‐derived fibers, a dual‐component activation and deactivation pathway is deduced by kinetic analysis and is absent when using a molecularly dissolved resting state. Investigating the solid‐state morphologies of the structures formed throughout the fuel‐driven reaction cycle using cryo‐EM reveals that the resting thermodynamic fibers evolve to transient thicker fibrils and layered superstructures. We show that the transient redox‐active hydrogels exhibit a nearly threefold increase in electrical conductivity upon fuel consumption before reverting to their original value over hours. These far‐from‐equilibrium materials are potential candidates in applications such as programmable biorobotics and chemical computing.
more »
« less
Precise Control of Dissipative Self‐assembly by Light and Electricity
Abstract Nature‐inspired synthetic dissipative self‐assemblies have attracted much attention recently. However, it remains a major challenge to achieve precise control over dissipative supramolecular assembly structures and functions of self‐contained systems. Here we combine light and electricity as two clean, and spatiotemporally addressable fuels to provide precise control over the morphology for dissipative self‐assembly of a perylene bisimide glycine (PBIg) building block in a self‐contained solution. In this design, electrochemical oxidation provides the positive fuel to activate PBIg self‐assembly while photoreduction supplies the negative fuel to deactivate the system for disassembly. Through programming the two counteracting fuels, we demonstrated the control of PBIg self‐assembly into a variety of assembly morphologies in a self‐contained system. In addition, by exerting light and electrical dual fuels simultaneously, we could create an active homeostasis exhibiting dynamic instability, leading to morphological change to asymmetric assemblies with curvatures. Such precise control over self‐assembly of self‐contained systems may find future applications in programming complex active materials as well as formulating pharmaceutical reagents with desired morphologies.
more »
« less
- Award ID(s):
- 1904939
- PAR ID:
- 10412843
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 29
- Issue:
- 27
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many models of self-assembly have been shown to be capable of performing computation. Tile Automata was recently introduced combining features of both Celluar Automata and the 2-Handed Model of self-assembly both capable of universal computation. In this work we study the complexity of Tile Automata utilizing features inherited from the two models mentioned above. We first present a construction for simulating Turing Machines that performs both covert and fuel efficient computation. We then explore the capabilities of limited Tile Automata systems such as 1-Dimensional systems (all assemblies are of height $$1$$) and freezing Systems (tiles may not repeat states). Using these results we provide a connection between the problem of finding the largest uniquely producible assembly using $$n$$ states and the busy beaver problem for non-freezing systems and provide a freezing system capable of uniquely assembling an assembly whose length is exponential in the number of states of the system. We finish by exploring the complexity of the Unique Assembly Verification problem in Tile Automata with different limitations such as freezing and systems without the power of detachment.more » « less
-
Nucleoside triphosphate (NTP)-dependent protein assemblies such as microtubules and actin filaments have inspired the development of diverse chemically fueled molecular machines and active materials but their functional sophistication has yet to be matched by design. Given this challenge, we asked whether it is possible to transform a natural adenosine 5′-triphosphate (ATP)-dependent enzyme into a dissipative self-assembling system, thereby altering the structural and functional mode in which chemical energy is used. Here we report that FtsH (filamentous temperature-sensitive protease H), a hexameric ATPase involved in membrane protein degradation, can be readily engineered to form one-dimensional helical nanotubes. FtsH nanotubes require constant energy input to maintain their integrity and degrade over time with the concomitant hydrolysis of ATP, analogous to natural NTP-dependent cytoskeletal assemblies. Yet, in contrast to natural dissipative systems, ATP hydrolysis is catalyzed by free FtsH protomers and FtsH nanotubes serve to conserve ATP, leading to transient assemblies whose lifetimes can be tuned from days to minutes through the inclusion of external ATPases in solution.more » « less
-
Abstract This work investigates the influence of dielectrophoretic forces on the structural features and the resulting aggregates of a chromogenic model system, peptide‐diacetylene (D3GV‐DA) amphiphiles. Here, we systematically investigate how non‐uniform electric fields impact the (i) peptide‐directed supramolecular assembly stage and (ii) topochemical photopolymerization stage of polydiacetylenes (PDAs) in a quadrupole‐based dielectrophoresis (DEP) device, as well as the (iii) manipulation of D3GV‐DA aggregates in a light‐induced DEP (LiDEP) platform. The conformation‐dependent chromatic phases of peptide‐PDAs are utilized to probe the chain‐level effect of DEP exposure after the supramolecular assembly or after the topochemical photopolymerization stage. Steady‐state spectroscopic and microscopy analyses show that structural features such as the chirality and morphologies of peptidic 1‐D nanostructures are mostly conserved upon DEP exposure, but applying mild, non‐uniform fields at the self‐assembly stage is sufficient for fine‐tuning the chromatic phase ratio in peptide‐PDAs and manipulating their aggregates via LiDEP. Overall, this work provides insights into how non‐uniform electric fields offer a controllable approach to fine‐tune or preserve the molecularly preset assembly order of DEP‐responsive supramolecular or biopolymeric assemblies, as well as manipulate their aggregates using light projections, which have future implications for the precision fabrication of macromolecular systems with hierarchical structure‐dependent function.more » « less
-
Abstract Liquid crystals offer a dynamic platform for developing advanced photonics and soft actuation systems due to their unique and facile tunability and reconfigurability. Achieving precise spatial patterning of the liquid crystal alignment is critical to developing electro‐optical devices, programmable origami, directed colloidal assembly, and controlling active matter. Here, a simple method is demonstrated to achieve continuous 3D control of the directions of liquid crystal mesogens using a two‐step photo‐exposure process. In the first step, polarized light sets the orientation in the plane of confining substrates; the second step uses unpolarized light of a prescribed dose to set the out‐of‐plane orientation. The method enables smoothly varying orientational patterns with sub‐micrometer precision. As a demonstration, the setup is used to create gradient‐index lenses with parabolic refractive index profiles that remain stable without external electric fields. The lenses' focal length and sensitivity to light polarization are characterized through experimental and numerical methods. The findings pave the way for developing next‐generation photonic devices and actuated materials, with potential applications in molecular self‐assembly, re‐configurable optics, and responsive matter.more » « less
An official website of the United States government
