skip to main content


Title: A model of fluid–structure and biochemical interactions for applications to subclinical leaflet thrombosis
Abstract

Subclinical leaflet thrombosis (SLT) is a potentially serious complication of aortic valve replacement with a bioprosthetic valve in which blood clots form on the replacement valve. SLT is associated with increased risk of transient ischemic attacks and strokes and can progress to clinical leaflet thrombosis. SLT following aortic valve replacement also may be related to subsequent structural valve deterioration, which can impair the durability of the valve replacement. Because of the difficulty in clinical imaging of SLT, models are needed to determine the mechanisms of SLT and could eventually predict which patients will develop SLT. To this end, we develop methods to simulate leaflet thrombosis that combine fluid–structure interaction and a simplified thrombosis model that allows for deposition along the moving leaflets. Additionally, this model can be adapted to model deposition or absorption along other moving boundaries. We present convergence results and quantify the model's ability to realize changes in valve opening and pressures. These new approaches are an important advancement in our tools for modeling thrombosis because they incorporate both adhesion to the surface of the moving leaflets and feedback to the fluid–structure interaction.

 
more » « less
Award ID(s):
1652541 1931516
NSF-PAR ID:
10413014
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal for Numerical Methods in Biomedical Engineering
Volume:
39
Issue:
5
ISSN:
2040-7939
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Transcatheter aortic valve replacement (TAVR) first received FDA approval for high-risk surgical patients in 2011 and has been approved for low-risk surgical patients since 2019. It is now the most common type of aortic valve replacement, and its use continues to accelerate. Computer modeling and simulation (CM&S) is a tool to aid in TAVR device design, regulatory approval, and indication in patient-specific care. This study introduces a computational fluid-structure interaction (FSI) model of TAVR with Medtronic’s CoreValve Evolut R device using the immersed finite element-difference (IFED) method. We perform dynamic simulations of crimping and deployment of the Evolut R, as well as device behavior across the cardiac cycle in a patient-specific aortic root anatomy reconstructed from computed tomography (CT) image data. These IFED simulations, which incorporate biomechanics models fit to experimental tensile test data, automatically capture the contact within the device and between the self-expanding stent and native anatomy. Further, we apply realistic driving and loading conditions based on clinical measurements of human ventricular and aortic pressures and flow rates to demonstrate that our Evolut R model supports a physiological diastolic pressure load and provides informative clinical performance predictions. 
    more » « less
  2. Abstract

    Venous valves are bicuspidal valves that ensure that blood in veins only flows back to the heart. To prevent retrograde blood flow, the two intraluminal leaflets meet in the center of the vein and occlude the vessel. In fluid‐structure interaction (FSI) simulations of venous valves, the large structural displacements may lead to mesh deteriorations and entanglements, causing instabilities of the solver and, consequently, the numerical solution to diverge. In this paper, we propose an arbitrary Lagrangian‐Eulerian (ALE) scheme for FSI simulations designed to solve these instabilities. A monolithic formulation for the FSI problem is considered, and due to the complexity of the operators, the exact Jacobian matrix is evaluated using automatic differentiation. The method relies on the introduction of a staggered in time velocity to improve stability, and on fictitious springs to model the contact force of the valve leaflets. Because the large structural displacements may compromise the quality of the fluid mesh as well, a smoother fluid displacement, obtained with the introduction of a scaling factor that measures the distance of a fluid element from the valve leaflet tip, guarantees that there are no mesh entanglements in the fluid domain. To further improve stability, a streamline upwind Petrov‐Galerkin (SUPG) method is employed. The proposed ALE scheme is applied to a two‐dimensional (2D) model of a venous valve. The presented simulations show that the proposed method deals well with the large structural displacements of the problem, allowing a reconstruction of the valve behavior in both the opening and closing phase.

     
    more » « less
  3. Abstract

    In pursuit of a suitable scaffold material for cardiac valve tissue engineering applications, an acellular, electrospun, biodegradable polyester carbonate urethane urea (PECUU) scaffold was evaluated as a pulmonary valve leaflet replacement in vivo.In sheep (n = 8), a single pulmonary valve leaflet was replaced with a PECUU leaflet and followed for 1, 6, and 12 weeks. Implanted leaflet function was assessed in vivo by echocardiography. Explanted samples were studied for gross pathology, microscopic changes in the extracellular matrix, host cellular re‐population, and immune responses, and for biomechanical properties. PECUU leaflets showed normal leaflet motion at implant, but decreased leaflet motion and dimensions at 6 weeks. The leaflets accumulated α‐SMA and CD45 positive cells, with surfaces covered with endothelial cells (CD31+). New collagen formation occurred (Picrosirius Red). Accumulated tissue thickness correlated with the decrease in leaflet motion. The PECUU scaffolds had histologic evidence of scaffold degradation and an accumulation of pro‐inflammatory/M1 and anti‐inflammatory/M2 macrophages over time in vivo. The extent of inflammatory cell accumulation correlated with tissue formation and polymer degradation but was also associated with leaflet thickening and decreased leaflet motion. Future studies should explore pre‐implant seeding of polymer scaffolds, more advanced polymer fabrication methods able to more closely approximate native tissue structure and function, and other techniques to control and balance the degradation of biomaterials and new tissue formation by modulation of the host immune response.

     
    more » « less
  4. Calcific aortic valve disease (CAVD) is an active pathobiological process leading to severe aortic stenosis, where the only treatment is valve replacement. Late-stage CAVD is characterized by calcification, disorganization of collagen, and deposition of glycosaminoglycans, such as chondroitin sulfate (CS), in the fibrosa. We developed a three-dimensional microfluidic device of the aortic valve fibrosa to study the effects of shear stress (1 or 20 dyne per cm 2 ), CS (1 or 20 mg mL −1 ), and endothelial cell presence on calcification. CAVD chips consisted of a collagen I hydrogel, where porcine aortic valve interstitial cells were embedded within and porcine aortic valve endothelial cells were seeded on top of the matrix for up to 21 days. Here, we show that this CAVD-on-a-chip is the first to develop human-like calcified nodules varying in calcium phosphate mineralization maturity resulting from high shear and endothelial cells, specifically di- and octa-calcium phosphates. Long-term co-culture microfluidic studies confirmed cell viability and calcium phosphate formations throughout 21 days. Given that CAVD has no targeted therapies, the creation of a physiologically relevant test-bed of the aortic valve could lead to advances in preclinical studies. 
    more » « less
  5. Abstract

    The utility of bioprosthetic heart valves (BHVs) is limited to certain patient populations because of their poor durability compared to mechanical prosthetic valves. Histological analysis of failed porcine BHVs suggests that degeneration of the tissue extracellular matrix (ECM), specifically the loss of proteoglycans and their glycosaminoglycans (GAGs), may lead to impaired mechanical performance, resulting in nucleation and propagation of tears and ultimately failure of the prosthetic. Several strategies have been proposed to address this deterioration, including novel chemical fixatives to stabilize ECM constituents and incorporation of small molecule inhibitors of catabolic enzymes implicated in the degeneration of the BHV ECM. Here, biomimetic proteoglycans (BPGs) were introduced into porcine aortic valves ex vivo and were shown to distribute throughout the valve leaflets. Incorporation of BPGs into the heart valve leaflet increased tissue overall GAG content. The presence of BPGs also significantly increased the micromodulus of the spongiosa layer within the BHV without compromising the chemical fixation process used to sterilize and strengthen the tissue prior to implantation. These findings suggest that a targeted approach for molecularly engineering valve leaflet ECM through the use of BPGs may be a viable way to improve the mechanical behavior and potential durability of BHVs.

     
    more » « less