skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimating three- and four-parameter MIRT models with importance-weighted sampling enhanced variational auto-encoder
Multidimensional Item Response Theory (MIRT) is widely used in educational and psychological assessment and evaluation. With the increasing size of modern assessment data, many existing estimation methods become computationally demanding and hence they are not scalable to big data, especially for the multidimensional three-parameter and four-parameter logistic models (i.e., M3PL and M4PL). To address this issue, we propose an importance-weighted sampling enhanced Variational Autoencoder (VAE) approach for the estimation of M3PL and M4PL. The key idea is to adopt a variational inference procedure in machine learning literature to approximate the intractable marginal likelihood, and further use importance-weighted samples to boost the trained VAE with a better log-likelihood approximation. Simulation studies are conducted to demonstrate the computational efficiency and scalability of the new algorithm in comparison to the popular alternative algorithms, i.e., Monte Carlo EM and Metropolis-Hastings Robbins-Monro methods. The good performance of the proposed method is also illustrated by a NAEP multistage testing data set.  more » « less
Award ID(s):
1846747 2150601
PAR ID:
10413385
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Psychology
Volume:
13
ISSN:
1664-1078
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper, we consider variational autoencoders (VAE) via empirical Bayes estimation, referred to as Empirical Bayes Variational Autoencoders (EBVAE), which is a general framework including popular VAE methods as special cases. Despite the widespread use of VAE, its theoretical aspects are less explored in the literature. Motivated by this, we establish a general theoretical framework for analyzing the excess risk associated with EBVAE under the setting of density estimation, covering both parametric and nonparametric cases, through the lens of M-estimation. As an application, we analyze the excess risk of the commonly-used EBVAE with Gaussian models and highlight the importance of covariance matrices of Gaussian encoders and decoders in obtaining a good statistical guarantee, shedding light on the empirical observations reported in the literature. 
    more » « less
  2. von Davier, Matthias (Ed.)
    Computerized assessment provides rich multidimensional data including trial-by-trial accuracy and response time (RT) measures. A key question in modeling this type of data is how to incorporate RT data, for example, in aid of ability estimation in item response theory (IRT) models. To address this, we propose a joint model consisting of a two-parameter IRT model for the dichotomous item response data, a log-normal model for the continuous RT data, and a normal model for corresponding paper-and-pencil scores. Then, we reformulate and reparameterize the model to capture the relationship between the model parameters, to facilitate the prior specification, and to make the Bayesian computation more efficient. Further, we propose several new model assessment criteria based on the decomposition of deviance information criterion (DIC) the logarithm of the pseudo-marginal likelihood (LPML). The proposed criteria can quantify the improvement in the fit of one part of the multidimensional data given the other parts. Finally, we have conducted several simulation studies to examine the empirical performance of the proposed model assessment criteria and have illustrated the application of these criteria using a real dataset from a computerized educational assessment program. 
    more » « less
  3. We present a novel generative Session-Based Recommendation (SBR) framework, called VAriational SEssion-based Recommendation (VASER) – a non-linear probabilistic methodology allowing Bayesian inference for flexible parameter estimation of sequential recommendations. Instead of directly applying extended Variational AutoEncoders (VAE) to SBR, the proposed method introduces normalizing flows to estimate the probabilistic posterior, which is more effective than the agnostic presumed prior approximation used in existing deep generative recommendation approaches. VASER explores soft attention mechanism to upweight the important clicks in a session. We empirically demonstrate that the proposed model significantly outperforms several state-of-the-art baselines, including the recently-proposed RNN/VAE-based approaches on real-world datasets. 
    more » « less
  4. Semi-implicit graph variational auto-encoder (SIG-VAE) is proposed to expand the flexibility of variational graph auto-encoders (VGAE) to model graph data. SIG-VAE employs a hierarchical variational framework to enable neighboring node sharing for better generative modeling of graph dependency structure, together with a Bernoulli-Poisson link decoder. Not only does this hierarchical construction provide a more flexible generative graph model to better capture real-world graph properties, but also does SIG-VAE naturally lead to semi-implicit hierarchical variational inference that allows faithful modeling of implicit posteriors of given graph data, which may exhibit heavy tails, multiple modes, skewness, and rich dependency structures. SIG-VAE integrates a carefully designed generative model, well suited to model real-world sparse graphs, and a sophisticated variational inference network, which propagates the graph structural information and distribution uncertainty to capture complex posteriors. SIG-VAE clearly outperforms a simple combination of VGAE with variational inference, including semi-implicit variational inference~(SIVI) or normalizing flow (NF), which does not propagate uncertainty in its inference network, and provides more interpretable latent representations than VGAE does. Extensive experiments with a variety of graph data show that SIG-VAE significantly outperforms state-of-the-art methods on several different graph analytic tasks. 
    more » « less
  5. Semi-implicit graph variational auto-encoder (SIG-VAE) is proposed to expand the flexibility of variational graph auto-encoders (VGAE) to model graph data. SIG-VAE employs a hierarchical variational framework to enable neighboring node sharing for better generative modeling of graph dependency structure, together with a Bernoulli-Poisson link decoder. Not only does this hierarchical construction provide a more flexible generative graph model to better capture real-world graph properties, but also does SIG-VAE naturally lead to semi-implicit hierarchical variational inference that allows faithful modeling of implicit posteriors of given graph data, which may exhibit heavy tails, multiple modes, skewness, and rich dependency structures. SIG-VAE integrates a carefully designed generative model, well suited to model real-world sparse graphs, and a sophisticated variational inference network, which propagates the graph structural information and distribution uncertainty to capture complex posteriors. SIG-VAE clearly outperforms a simple combination of VGAE with variational inference, including semi-implicit variational inference~(SIVI) or normalizing flow (NF), which does not propagate uncertainty in its inference network, and provides more interpretable latent representations than VGAE does. Extensive experiments with a variety of graph data show that SIG-VAE significantly outperforms state-of-the-art methods on several different graph analytic tasks. 
    more » « less