skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bridging the Gap—The Disappearance of the Intermediate Period Gap for Fully Convective Stars, Uncovered by New ZTF Rotation Periods
Abstract The intermediate period gap, discovered by Kepler, is an observed dearth of stellar rotation periods in the temperature–period diagram at ∼20 days for G dwarfs and up to ∼30 days for early-M dwarfs. However, because Kepler mainly targeted solar-like stars, there is a lack of measured periods for M dwarfs, especially those at the fully convective limit. Therefore it is unclear if the intermediate period gap exists for mid- to late-M dwarfs. Here, we present a period catalog containing 40,553 rotation periods (9535 periods >10 days), measured using the Zwicky Transient Facility (ZTF). To measure these periods, we developed a simple pipeline that improves directly on the ZTF archival light curves and reduces the photometric scatter by 26%, on average. This new catalog spans a range of stellar temperatures that connect samples from Kepler with MEarth, a ground-based time-domain survey of bright M dwarfs, and reveals that the intermediate period gap closes at the theoretically predicted location of the fully convective boundary ( G BP − G RP ∼ 2.45 mag). This result supports the hypothesis that the gap is caused by core–envelope interactions. Using gyro-kinematic ages, we also find a potential rapid spin-down of stars across this period gap.  more » « less
Award ID(s):
2108251
PAR ID:
10413457
Author(s) / Creator(s):
 ; ; ; ;
Date Published:
Journal Name:
The Astronomical Journal
Volume:
164
Issue:
6
ISSN:
0004-6256
Page Range / eLocation ID:
251
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Since identifying the gap in the H-R Diagram (HRD) marking the transition between partially and fully-convective interiors, a unique type of slowly pulsating M dwarf has been proposed. These unstable M dwarfs provide new laboratories in which to understand how changing interior structures can produce potentially observable activity at the surface. In this work, we report the results of the largest high-resolution spectroscopic Hαemission survey to date spanning this transition region, including 480 M dwarfs observed using the CHIRON spectrograph at CTIO/SMARTS 1.5 m. We find that M dwarfs with Hαin emission are almost entirely found 0–0.5 mag above the top edge of the gap in the HRD, whereas effectively no stars in and below the gap show emission. Thus, the top edge of the gap marks a relatively sharp activity transition, and there is no anomalous Hαactivity for stars in the gap. We also identify a new region at 10.3 <MG< 10.8 on the main sequence where fewer M dwarfs exhibit Hαemission compared to M dwarfs above and below this magnitude range. Careful evaluation of the results in the literature indicates that (1) rotation and Hαactivity distributions on the main-sequence are closely related, and (2) fewer stars in this absolute magnitude range rotate in less than ∼13 days than populations surrounding this region. This result suggests that the most massive fully-convective stars lose their angular momentum faster than both partially convective stars and less massive fully-convective stars. 
    more » « less
  2. Abstract The association of starspots with magnetic fields leads to an expectation that quantities which correlate with magnetic field strength may also correlate with starspot coverage. Since younger stars spin faster and are more magnetically active, assessing whether starspot coverage correlates with shorter rotation periods and stellar youth tests these principles. Here we analyze the starspot covering fraction versus stellar age for M-, G-, K-, and F-type stars based on previously determined variability and rotation periods of over 30,000 Kepler main-sequence stars. We determine the correlation between age and variability using single and dual power law best fits. We find that starspot coverage does indeed decrease with age. Only when the data are binned in an effort to remove the effects of activity cycles of individual stars, do statistically significant power law fits emerge for each stellar type. Using bin averages, we then find that the starspot covering fraction scales with the X-ray to bolometric ratio to the power λ with 0.22 ± 0.03 < λ < 0.32 ± 0.09 for G-type stars of rotation period below 15 days and for the full range of F- and M-type stars. For K-type stars, we find two branches of λ separated by variability bins, with the lower branch showing nearly constant starspot coverage and the upper branch λ ∼ 0.35 ± 0.04. G-type stars with periods longer than 15 days exhibit a transition to steeper power law of λ ∼ 2.4 ± 1.0. The potential connection to previous rotation-age measurements suggesting a magnetic breaking transition at the solar age, corresponding to period of 24.5 is also of interest. 
    more » « less
  3. Abstract The rotation period of a star is an important quantity that provides insight into its structure and state. For stars with surface features like starspots, their periods can be inferred from brightness variations as these features move across the stellar surface. TESS, with its all-sky coverage, is providing the largest sample of stars for obtaining rotation periods. However, most of the periods have been limited to shorter than the 13.7 days TESS orbital period due to strong background signals (e.g., scattered light) on those timescales. In this study, we investigated the viability of measuring longer periods (>10 days) from TESS light curves for stars in the Northern Continuous Viewing Zone (NCVZ). We first created a reference set of 272 period measurements longer than 10 days for K and M dwarfs in the NCVZ using data from the Zwicky Transient Facility (ZTF) that we consider as the “ground truth” given ZTF’s long temporal baseline of 6+ years. We then used theunpopularpipeline to detrend TESS light curves and implemented a modified Lomb–Scargle (LS) periodogram that accounts for flux offsets between observing sectors. For 179 out of the 272 sources (66%), the TESS-derived periods match the ZTF-derived periods to within 10%. The match rate increases to 81% (137 out of 170) when restricting to sources with a TESS LS power that exceeds a threshold. Our results confirm the capability of measuring periods longer than 10 days from TESS data, highlighting the data set’s potential for studying slow rotators. 
    more » « less
  4. ABSTRACT We examine the properties of ∼50 000 rotational variables from the ASAS-SN survey using distances, stellar properties, and probes of binarity from Gaia DR3 and the SDSS APOGEE survey. They have higher amplitudes and span a broader period range than previously studied Kepler rotators. We find they divide into three groups of main sequence stars (MS1, MS2s, MS2b) and four of giants (G1/3, G2, G4s, and G4b). MS1 stars are slowly rotating (10–30 d), likely single stars with a limited range of temperatures. MS2s stars are more rapidly rotating (days) single stars spanning the lower main sequence up to the Kraft break. There is a clear period gap (or minimum) between MS1 and MS2s, similar to that seen for lower temperatures in the Kepler samples. MS2b stars are tidally locked binaries with periods of days. G1/3 stars are heavily spotted, tidally locked RS CVn stars with periods of 10s of days. G2 stars are less luminous, heavily spotted, tidally locked sub-subgiants with periods of ∼10 d. G4s stars have intermediate luminosities to G1/3 and G2, slow rotation periods (approaching 100 d), and are almost certainly all merger remnants. G4b stars have similar rotation periods and luminosities to G4s, but consist of sub-synchronously rotating binaries. We see no difference in indicators for the presence of very wide binary companions between any of these groups and control samples of photometric twin stars built for each group. 
    more » « less
  5. Abstract Stellar spin down is a critical yet poorly understood component of stellar evolution. In particular, results from the Kepler Mission imply that mature age, solar-type stars have inefficient magnetic braking, resulting in a stalled spin-down rate. However, a large number of precise asteroseismic ages are needed for mature (≥3 Gyr) stars in order to probe the regime where traditional and stalled spin-down models differ. In this paper, we present a new asteroseismic benchmark star for gyrochronology discovered using reprocessed Kepler short cadence data. KIC 11029516 (Papayu) is a bright (Kp= 9.6 mag) solar-type star with a well-measured rotation period (21.1 ± 0.8 days) from spot modulation using 4 yr of Kepler long-cadence data. We combine asteroseismology and spectroscopy to obtainTeff= 5888 ± 100 K, [Fe/H] = 0.30 ± 0.06 dex,M= 1.24 ± 0.05M,R= 1.34 ± 0.02R, and age of 4.0 ± 0.4 Gyr, making Papayu one of the most similar stars to the Sun in terms of temperature and radius with an asteroseismic age and a rotation period measured from spot modulation. We find that Papayu sits at the transition of where traditional and weakened spin-down models diverge. A comparison with stars of similar zero-age main-sequence temperatures supports previous findings that weakened spin-down models are required to explain the ages and rotation periods of old solar-type stars. 
    more » « less