Abstract Reducible oxides are widely used catalyst supports that can increase oxidation reaction rates by transferring lattice oxygen at the metal-support interface. There are many outstanding questions regarding the atomic-scale dynamic meta-stability (i.e., fluxional behavior) of the interface during catalysis. Here, we employ aberration-correctedoperandoelectron microscopy to visualize the structural dynamics occurring at and near Pt/CeO2interfaces during CO oxidation. We show that the catalytic turnover frequency correlates with fluxional behavior that (a) destabilizes the supported Pt particle, (b) marks an enhanced rate of oxygen vacancy creation and annihilation, and (c) leads to increased strain and reduction in the CeO2support surface. Overall, the results implicate the interfacial Pt-O-Ce bonds anchoring the Pt to the support as being involved also in the catalytically-driven oxygen transfer process, and they suggest that oxygen reduction takes place on the highly reduced CeO2surface before migrating to the interfacial perimeter for reaction with CO.
more »
« less
Atomic Level Strain Induced by Static and 1 Dynamic Oxygen Vacancies on Reducible Oxide Surfaces
Surface strain often controls properties of materials including charge transport and chemical reactivity. Localized surface strain is measured with atomic resolution on (111) ceria nanoparticle surfaces using environmental transmission electron microscopy under different redox conditions. Density functional theory (DFT) coupled with TEM image simulations have been used to interpret the experimental data. Oxygen vacancy creation/annihilation processes introduce strain at the surface and near surface regions of the cation sublattice. Both static and fluxional strainmaps are generated from high resolution images recorded under varying reducing conditions. While fluxional strain is highest at locations associated with unstable vacancy sites, highly inhomogeneous static strain fields comprising of alternating tensile/compressing strain is seen at the surface and subsurfaces linked to the presence of stable oxygen vacancies. Interestingly, both stable and unstable oxygen vacancies are found within a few atomic spacings of each other on the same surface. The static strain pattern depends on the ambient environment inside the TEM.
more »
« less
- PAR ID:
- 10414085
- Date Published:
- Journal Name:
- arXivorg
- Volume:
- arXiv:2210.01764
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Oxygen vacancy is the most common type of point defects in functional oxides, and it is known to have profound influence on their properties. This is particularly true for ferroelectric oxides since their interaction with ferroelectric polarization often dictates the ferroelectric responses. Here, we study the influence of the concentration of oxygen vacancies on the stability of ferroelectric domain walls (DWs) in BiFeO3, a material with a relatively narrow bandgap among all perovskite oxides, which enables strong interactions among electronic charge carriers, oxygen vacancies, and ferroelectric domains. It is found that the electronic charge carriers in the absence of oxygen vacancies have essentially no influence on the spatial polarization distribution of the DWs due to their low concentrations. Upon increasing the concentration of oxygen vacancies, charge‐neutral DWs with an originally symmetric polarization distribution symmetric around the center of the wall can develop a strong asymmetry of the polarization field, which is mediated by the electrostatic interaction between polarization and electrons from the ionization of oxygen vacancies. Strongly charged head‐to‐head DWs that are unstable without oxygen vacancies can be energetically stabilized in the off‐stoichiometric BiFeO3−δwithδ∼ 0.02 where ionization of oxygen vacancies provides sufficient free electrons to compensate the bound charge at the wall. Our results delineate the electrostatic coupling of the ionic defects and the associated free electronic charge carriers with the bound charge in the vicinity of neutral and charged DWs in perovskite ferroelectrics.more » « less
-
Among their numerous technological applications, semi-coherent oxide heterostructures have emerged as promising candidates for applications in intermediate temperature solid oxide fuel cell electrolytes, wherein interfaces influence ionic transport.Since misfit dislocations impact ionic transport in these materials, oxygen vacancy formation and migration at misfit dislocations in oxide heterostructures are central to their performance as an ionic conductor. Herein, we report high-throughput atomistic simulations to predict thousands of activation energy barriers for oxygen vacancy migration at misfit dislocations in SrTiO3/BaZrO3 heterostructures. Dopants display a noticeable effect as higher activation energies are uncovered in their vicinity. Interface layer chemistry has a fundamental influence on the magnitude of activation energy barriers since they are dissimilar at misfit dislocations as compared to coherent terraces. Lower activation energies are uncovered when oxygen vacancies migrate toward misfit dislocations, but higher energies when they hop away, revealing that oxygen vacancies would get trapped at misfit dislocations and impact ionic transport. The results herein offer atomic scale insights into ionic transport at misfit dislocations and fundamental factors governing the ionic conductivity of thin film oxide electrolytes.more » « less
-
It was demonstrated recently that the nano-optical and nanoelectronic properties of VO2can be spatially programmed through the local injection of oxygen vacancies by atomic force microscope writing. In this work, we study the dynamic evolution of the patterned domain structures as a function of the oxygen vacancy concentration and the time. A threshold doping level is identified that is critical for both the metal–insulator transition and the defect stabilization. The diffusion of oxygen vacancies in the monoclinic phase is also characterized, which is directly responsible for the short lifetimes of sub-100 nm domain structures. This information is imperative for the development of oxide nanoelectronics through defect manipulations.more » « less
-
Vacancy engineering of 2H-transition metal dichalcogenides (2H-TMDs) has recently attracted great attention due to its potential to fine-tune the phonon and opto-electric properties of these materials. From a mechanical perspective, this symmetry-breaking process typically reduces the overall crack resistance of the material and adversely affects its reliability. However, vacancies can trigger the formation of heterogeneous phases that synergistically improve fracture properties. In this study, using MoSe2 as an example, we characterize the types and density of vacancies that can emerge under electron irradiation and quantify their effect on fracture. Molecular dynamic (MD) simulations, employing a re-parameterized Tersoff potential capable of accurately capturing bond dissociation and structural phase changes, reveal that isolated transition metal monovacancies or chalcogenide divacancies tend to arrest the crack tip and hence enhance the monolayer toughness. In contrast, isolated chalcogenide monovacancies do not significantly affect toughness. The investigation further reveals that selenium vacancy lines, formed by high electron dose rates, alter the crack propagating direction and lead to multiple crack kinking. Using atomic displacements and virial stresses together with a continuum mapping, displacement, strain, and stress fields are computed to extract mechanistic information, e.g., conditions for crack kinking and size effects in fracture events. The study also reveals the potential of specific defect patterns, “vacancy engineering,” to improve the toughness of 2H-TMDs materials.more » « less
An official website of the United States government

