skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1308085

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Surface strain often controls properties of materials including charge transport and chemical reactivity. Localized surface strain is measured with atomic resolution on (111) ceria nanoparticle surfaces using environmental transmission electron microscopy under different redox conditions. Density functional theory (DFT) coupled with TEM image simulations have been used to interpret the experimental data. Oxygen vacancy creation/annihilation processes introduce strain at the surface and near surface regions of the cation sublattice. Both static and fluxional strainmaps are generated from high resolution images recorded under varying reducing conditions. While fluxional strain is highest at locations associated with unstable vacancy sites, highly inhomogeneous static strain fields comprising of alternating tensile/compressing strain is seen at the surface and subsurfaces linked to the presence of stable oxygen vacancies. Interestingly, both stable and unstable oxygen vacancies are found within a few atomic spacings of each other on the same surface. The static strain pattern depends on the ambient environment inside the TEM. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. Ceria has proven to be an excellent ion-transport and ion-exchange material when used in polycrystalline form and with a high-concentration of aliovalent doped cations. Despite its widespread application, the impact of atomic-scale defects in this material are scarcely studied and poorly understood. In this article, using first-principles simulations, we provide a fundamental understanding of the atomic-structure, thermodynamic stability and electronic properties of undoped grain-boundaries (GBs) and alkaline-earth metal (AEM) doped GBs in ceria. Using density-functional theory simulations, with a GGA+U functional, we find the 3 (111)/[101] GB is thermodynamically more stable than the 3 (121)/[101] GB due to the larger atomic coherency in the 3 (111)/[101] GB plane. We dope the GBs with 20% [M]GB (M=Be, Mg, Ca, Sr, and Ba) and find that the GB energies have a parabolic dependence on the size of solutes,the interfacial strain and the packing density of the GB. We see a stabilization of the GBs upon Ca, Sr and Ba doping whereas Be and Mg render them thermodynamically unstable. The electronic density of states reveal that no defect states are present in or above the band gap of the AEM doped ceria, which is highly conducive to maintain low electronic mobility in this ionic conductor. The electronic properties, unlike the thermodynamic stability, exhibit complex inter-dependence on the structure and chemistry of the host and the solutes. This work makes advances in the atomic-scale understanding of aliovalent cation doped ceria GBs serving as an anchor to future studies that can focus on understanding and improving ionic-transport. 
    more » « less
  7. Abstract Many nanoparticles in fields such as heterogeneous catalysis undergo surface structural fluctuations during chemical reactions, which may control functionality. These dynamic structural changes may be ideally investigated with time-resolved in situ electron microscopy. We have explored approaches for extracting quantitative information from large time-resolved image data sets with a low signal to noise recorded with a direct electron detector on an aberration-corrected transmission electron microscope. We focus on quantitatively characterizing beam-induced dynamic structural rearrangements taking place on the surface of CeO 2 (ceria). A 2D Gaussian fitting procedure is employed to determine the position and occupancy of each atomic column in the nanoparticle with a temporal resolution of 2.5 ms and a spatial precision of 0.25 Ã…. Local rapid lattice expansions/contractions and atomic migration were revealed to occur on the (100) surface, whereas (111) surfaces were relatively stable throughout the experiment. The application of this methodology to other materials will provide new insights into the behavior of nanoparticle surface reconstructions that were previously inaccessible using other methods, which will have important consequences for the understanding of dynamic structure–property relationships. 
    more » « less