skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying harm
In earlier work, we defined a qualitative notion of harm: either harm is caused, or it is not. For practical applications, we often need to quantify harm; for example, we may want to choose the least harmful of a set of possible interventions. We first present a quantitative definition of harm in a deterministic context involving a single individual, then we consider the issues involved in dealing with uncertainty regarding the context and going from a notion of harm for a single individual to a notion of ``societal harm'', which involves aggregating the harm to individuals. We show that the ``obvious'' way of doing this (just taking the expected harm for an individual and then summing the expected harm over all individuals) can lead to counterintuitive or inappropriate answers, and discuss alternatives, drawing on work from the decision-theory literature.  more » « less
Award ID(s):
1703846
PAR ID:
10414210
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 32nd International Joint Conference on Artificial Intelligence (IJCAI 2023)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Algorithmic systems are often called upon to assist in high-stakes decision making. In light of this, algorithmic recourse, the principle wherein individuals should be able to take action against an undesirable outcome made by an algorithmic system, is receiving growing attention. The bulk of the literature on algorithmic recourse to-date focuses primarily on how to provide recourse to a single individual, overlooking a critical element: the effects of a continuously changing context. Disregarding these effects on recourse is a significant oversight, since, in almost all cases, recourse consists of an individual making a first, unfavorable attempt, and then being given an opportunity to make one or several attempts at a later date — when the context might have changed. This can create false expectations, as initial recourse recommendations may become less reliable over time due to model drift and competition for access to the favorable outcome between individuals. In this work we propose an agent-based simulation framework for studying the effects of a continuously changing environment on algorithmic recourse. In particular, we identify two main effects that can alter the reliability of recourse for individuals represented by the agents: (1) competition with other agents acting upon recourse, and (2) competition with new agents entering the environment. Our findings highlight that only a small set of specific parameterizations result in algorithmic recourse that is reliable for agents over time. Consequently, we argue that substantial additional work is needed to understand recourse reliability over time, and to develop recourse methods that reward agents’ effort. 
    more » « less
  2. Individuals’ decisions under risk tend to be in line with the notion that“losses loom larger than gains.” This loss aversion in decision making is commonly understood as a stable individual preference that is manifested across different contexts. The presumed stability and generality, which underlies the prominence of loss aversion in the literature at large, has been recently questioned by studies reporting how loss aversion can disappear, and even reverse, as a function of the choice context. The present study investigated whether loss aversion re ects a trait-like attitude of avoiding losses or rather individuals’ adaptability to different con- texts. We report three experiments investigating the within-subject context sensitivity of loss aversion in a two-alternative forced-choice task. Our results show that the choice context can shift people’s loss aversion, though somewhat inconsistently. Moreover, individual estimates of loss aversion are shown to have a con- siderable degree of stability. Altogether, these results indicate that even though the absolute value of loss aversion can be affected by external factors such as the choice context, estimates of people’s loss aversion still capture the relative dispositions toward gains and losses across individuals. 
    more » « less
  3. Human mobility data science using trajectories or check-ins of individuals has many applications. Recently, we have seen a plethora of research efforts that tackle these applications. However, research progress in this field is limited by a lack of large and representative datasets. The largest and most commonly used dataset of individual human trajectories captures fewer than 200 individuals, while datasets of individual human check-ins capture fewer than 100 check-ins per city per day. Thus, it is not clear if findings from the human mobility data science community would generalize to large populations. Since obtaining massive, representative, and individual-level human mobility data is hard to come by due to privacy considerations, the vision of this work is to embrace the use of data generated by large-scale socially realistic microsimulations. Informed by both real data and leveraging social and behavioral theories, massive spatially explicit microsimulations may allow us to simulate entire megacities at the person level. The simulated worlds, which do not capture any identifiable personal information, allow us to perform “in silico” experiments using the simulated world as a sandbox in which we have perfect information and perfect control without jeopardizing the privacy of any actual individual. In silico experiments have become commonplace in other scientific domains such as chemistry and biology, permitting experiments that foster the understanding of concepts without any harm to individuals. This work describes challenges and opportunities for leveraging massive and realistic simulated alternate worlds for in silico human mobility data science. 
    more » « less
  4. null (Ed.)
    Diffusion of information in social network has been the focus of intense research in the recent past decades due to its significant impact in shaping public discourse through group/individual influence. Existing research primarily models influence as a binary property of entities: influenced or not influenced. While this is a useful abstraction, it discards the notion of degree of influence, i.e., certain individuals may be influenced ``more'' than others. We introduce the notion of \emph{attitude}, which, as described in social psychology, is the degree by which an entity is influenced by the information. Intuitively, attitude captures the number of distinct neighbors of an entity influencing the latter. We present an information diffusion model (AIC model) that quantifies the degree of influence, i.e., attitude of individuals, in a social network. With this model, we formulate and study attitude maximization problem. We prove that the function for computing attitude is monotonic and sub-modular, and the attitude maximization problem is NP-Hard. We present a greedy algorithm for maximization with an approximation guarantee of $(1-1/e)$. In the context of AIC model, we study two problems, with the aim to investigate the scenarios where attaining individuals with high attitude is objectively more important than maximizing the attitude of the entire network. In the first problem, we introduce the notion of \emph{actionable attitude}; intuitively, individuals with actionable attitude are likely to ``act'' on their attained attitude. We show that the function for computing actionable attitude, unlike that for computing attitude, is non-submodular and however is \emph{approximately submodular}. We present approximation algorithm for maximizing actionable attitude in a network. In the second problem, we consider identifying the number of individuals in the network with attitude above a certain value, a threshold. In this context, the function for computing the number of individuals with attitude above a given threshold induced by a seed set is \emph{neither submodular nor supermodular}. We present heuristics for realizing the solution to the problem. We experimentally evaluated our algorithms and studied empirical properties of the attitude of nodes in network such as spatial and value distribution of high attitude nodes. 
    more » « less
  5. Worthy, Darrell A. (Ed.)
    When making decisions involving risk, people may learn about the risk from descriptions or from experience. The description-experience gap refers to the difference in decision patterns driven by this discrepancy in learning format. Across two experiments, we investigated whether learning from description versus experience differentially affects the direction and the magnitude of a context effect in risky decision making. In Study 1 and 2, a computerized game called the Decisions about Risk Task (DART) was used to measure people’s risk-taking tendencies toward hazard stimuli that exploded probabilistically. The rate at which a context hazard caused harm was manipulated, while the rate at which a focal hazard caused harm was held constant. The format by which this information was learned was also manipulated; it was learned primarily by experience or by description. The results revealed that participants’ behavior toward the focal hazard varied depending on what they had learned about the context hazard. Specifically, there were contrast effects in which participants were more likely to choose a risky behavior toward the focal hazard when the harm rate posed by the context hazard was high rather than low. Critically, these contrast effects were of similar strength irrespective of whether the risk information was learned from experience or description. Participants’ verbal assessments of risk likelihood also showed contrast effects, irrespective of learning format. Although risk information about a context hazard in DART does nothing to affect the objective expected value of risky versus safe behaviors toward focal hazards, it did affect participants’ perceptions and behaviors—regardless of whether the information was learned from description or experience. Our findings suggest that context has a broad-based role in how people assess and make decisions about hazards. 
    more » « less