skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nano-enabled strategies to enhance biological nitrogen fixation
Increasing the capacity of biological nitrogen fixation (BNF) is an effective strategy to enhance food security while simultaneously reducing the carbon and nitrogen footprint of agriculture. Nanotechnology offers several pathways to enhance BNF successfully.  more » « less
Award ID(s):
2001611
PAR ID:
10414244
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Nanotechnology
ISSN:
1748-3387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biological nitrogen fixation (BNF) by microorganisms associated with cryptogamic covers, such as cyanolichens and bryophytes, is a primary source of fixed nitrogen in pristine, high-latitude ecosystems. On land, low molybdenum (Mo) availability has been shown to limit BNF by the most common form of nitrogenase (Nase), which requires Mo in its active site. Vanadium (V) and iron-only Nases have been suggested as viable alternatives to countering Mo limitation of BNF; however, field data supporting this long-standing hypothesis have been lacking. Here, we elucidate the contribution of vanadium nitrogenase (V-Nase) to BNF by cyanolichens across a 600-km latitudinal transect in eastern boreal forests of North America. Widespread V-Nase activity was detected (∼15–50% of total BNF rates), with most of the activity found in the northern part of the transect. We observed a 3-fold increase of V-Nase contribution during the 20-wk growing season. By including the contribution of V-Nase to BNF, estimates of new N input by cyanolichens increase by up to 30%. We find that variability in V-based BNF is strongly related to Mo availability, and we identify a Mo threshold of ∼250 ng·g lichen −1 for the onset of V-based BNF. Our results provide compelling ecosystem-scale evidence for the use of the V-Nase as a surrogate enzyme that contributes to BNF when Mo is limiting. Given widespread findings of terrestrial Mo limitation, including the carbon-rich circumboreal belt where global change is most rapid, additional consideration of V-based BNF is required in experimental and modeling studies of terrestrial biogeochemistry. 
    more » « less
  2. Abstract High rates of biological nitrogen fixation (BNF) are commonly reported for tropical forests, but most studies have been conducted in regions that receive substantial inputs of molybdenum (Mo) from atmospheric dust and sea‐salt aerosols. Even in these regions, the low availability of Mo can constrain free‐living BNF catalyzed by heterotrophic bacteria and archaea. We hypothesized that in regions where atmospheric inputs of Mo are low and soils are highly weathered, such as the southeastern Amazon, Mo would constrain BNF. We also hypothesized that the high soil acidity, characteristic of the Amazon Basin, would further constrain Mo availability and therefore soil BNF. We conducted two field experiments across the wet and dry seasons, adding Mo, phosphorus (P), and lime alone and in combination to the forest floor in the southeastern Amazon. We sampled soils and litter immediately, and then weeks and months after the applications, and measured Mo and P availability through resin extractions and BNF with the acetylene reduction assay. The experimental additions of Mo and P increased their availability and the lime increased soil pH. While the combination of Mo and P increased BNF at some time points, BNF rates did not increase strongly or consistently across the study as a whole, suggesting that Mo, P, and soil pH are not the dominant controls over BNF. In a separate short‐term laboratory experiment, BNF did not respond strongly to Mo and P even when labile carbon was added. We postulate that high nitrogen (N) availability in this area of the Amazon, as indicated by the stoichiometry of soils and vegetation and the high nitrate soil stocks, likely suppresses BNF at this site. These patterns may also extend across highly weathered soils with high N availability in other topographically stable regions of the tropics. 
    more » « less
  3. Abstract Accurately quantifying rates and patterns of biological nitrogen fixation (BNF) in terrestrial ecosystems is essential to characterize ecological and biogeochemical interactions, identify mechanistic controls, improve BNF representation in conceptual and numerical modelling, and forecast nitrogen limitation constraints on future carbon (C) cycling.While many resources address the technical advantages and limitations of different methods for measuring BNF, less systematic consideration has been given to the broader decisions involved in planning studies, interpreting data, and extrapolating results. Here, we present a conceptual and practical road map to study design, study execution, data analysis and scaling, outlining key considerations at each step.We address issues including defining N‐fixing niches of interest, identifying important sources of temporal and spatial heterogeneity, designing a sampling scheme (including method selection, measurement conditions, replication, and consideration of hotspots and hot moments), and approaches to analysing, scaling and reporting BNF. We also review the comparability of estimates derived using different approaches in the literature, and provide sample R code for simulating symbiotic BNF data frames and upscaling.Improving and standardizing study design at each of these stages will improve the accuracy and interpretability of data, define limits of extrapolation, and facilitate broader use of BNF data for downstream applications. We highlight aspects—such as quantifying scales of heterogeneity, statistical approaches for dealing with non‐normality, and consideration of rates versus ecological significance—that are ripe for further development. 
    more » « less
  4. Abstract In this study, the three-dimensional spatial distributions of a number of metabolites involved in regulating symbiosis and biological nitrogen fixation (BNF) within soybean root nodules were revealed using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). While many metabolites exhibited distinct spatial compartmentalization, some metabolites were asymmetrically distributed throughout the nodule (e.g., S-adenosylmethionine). These results establish a more complex metabolic view of plant–bacteria symbiosis (and BNF) within soybean nodules than previously hypothesized. Collectively these findings suggest that spatial perspectives in metabolic regulation should be considered to unravel the overall complexity of interacting organisms, like those relating to associations of nitrogen-fixing bacteria with host plants. 
    more » « less
  5. null (Ed.)
    Nitrogen (N) is an essential but generally limiting nutrient for biological systems. Development of the Haber-Bosch industrial process for ammonia synthesis helped to relieve N limitation of agricultural production, fueling the Green Revolution and reducing hunger. However, the massive use of industrial N fertilizer has doubled the N moving through the global N cycle with dramatic environmental consequences that threaten planetary health. Thus, there is an urgent need to reduce losses of reactive N from agriculture, while ensuring sufficient N inputs for food security. Here we review current knowledge related to N use efficiency (NUE) in agriculture and identify research opportunities in the areas of agronomy, plant breeding, biological N fixation (BNF), soil N cycling, and modeling to achieve responsible, sustainable use of N in agriculture. Amongst these opportunities, improved agricultural practices that synchronize crop N demand with soil N availability are low-hanging fruit. Crop breeding that targets root and shoot physiological processes will likely increase N uptake and utilization of soil N, while breeding for BNF effectiveness in legumes will enhance overall system NUE. Likewise, engineering of novel N-fixing symbioses in non-legumes could reduce the need for chemical fertilizers in agroecosystems but is a much longer-term goal. The use of simulation modeling to conceptualize the complex, interwoven processes that affect agroecosystem NUE, along with multi-objective optimization, will also accelerate NUE gains. 
    more » « less