skip to main content


Search for: All records

Award ID contains: 2027990

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Our efforts as a society to combat the ongoing COVID‐19 pandemic are continuously challenged by the emergence of new variants. These variants can be more infectious than existing strains and many of them are also more resistant to available vaccines. The appearance of these new variants cause new surges of infections, exacerbated by infrastructural difficulties, such as shortages of medical personnel or test kits. In this work, a high‐resolution computational framework for modeling the simultaneous spread of two COVID‐19 variants: a widely spread base variant and a new one, is established. The computational framework consists of a detailed database of a representative U.S. town and a high‐resolution agent‐based model that uses the Omicron variant as the base variant and offers flexibility in the incorporation of new variants. The results suggest that the spread of new variants can be contained with highly efficacious tests and mild loss of vaccine protection. However, the aggressiveness of the ongoing Omicron variant and the current waning vaccine immunity point to an endemic phase of COVID‐19, in which multiple variants will coexist and residents continue to suffer from infections.

     
    more » « less
  2. Abstract

    Containment measures have been applied throughout the world to halt the COVID-19 pandemic. In the United States, several forms of lockdown have been adopted in different parts of the country, leading to heterogeneous epidemiological, social, and economic effects. Here, we present a spatio-temporal analysis of a Twitter dataset comprising 1.3 million geo-localized Tweets about lockdown, from January to May 2020. Through sentiment analysis, we classified Tweets as expressing positive or negative emotions about lockdown, demonstrating a change in perception during the course of the pandemic modulated by socio-economic factors. A transfer entropy analysis of the time series of Tweets unveiled that the emotions in different parts of the country did not evolve independently. Rather, they were mediated by spatial interactions, which were also related to socio-ecomomic factors and, arguably, to political orientations. This study constitutes a first, necessary step toward isolating the mechanisms underlying the acceptance of public health interventions from highly resolved online datasets.

     
    more » « less
  3. Abstract

    As COVID‐19 vaccine is being rolled out in the US, public health authorities are gradually reopening the economy. To date, there is no consensus on a common approach among local authorities. Here, a high‐resolution agent‐based model is proposed to examine the interplay between the increased immunity afforded by the vaccine roll‐out and the transmission risks associated with reopening efforts. The model faithfully reproduces the demographics, spatial layout, and mobility patterns of the town of New Rochelle, NY — representative of the urban fabric of the US. Model predictions warrant caution in the reopening under the current rate at which people are being vaccinated, whereby increasing access to social gatherings in leisure locations and households at a 1% daily rate can lead to a 28% increase in the fatality rate within the next three months. The vaccine roll‐out plays a crucial role on the safety of reopening: doubling the current vaccination rate is predicted to be sufficient for safe, rapid reopening.

     
    more » « less
  4. Abstract

    Amid the ongoing COVID‐19 pandemic, public health authorities and the general population are striving to achieve a balance between safety and normalcy. Ever changing conditions call for the development of theory and simulation tools to finely describe multiple strata of society while supporting the evaluation of “what‐if” scenarios. Particularly important is to assess the effectiveness of potential testing approaches and vaccination strategies. Here, an agent‐based modeling platform is proposed to simulate the spreading of COVID‐19 in small towns and cities, with a single‐individual resolution. The platform is validated on real data from New Rochelle, NY—one of the first outbreaks registered in the United States. Supported by expert knowledge and informed by reported data, the model incorporates detailed elements of the spreading within a statistically realistic population. Along with pertinent functionality such as testing, treatment, and vaccination options, the model accounts for the burden of other illnesses with symptoms similar to COVID‐19. Unique to the model is the possibility to explore different testing approaches—in hospitals or drive‐through facilities—and vaccination strategies that could prioritize vulnerable groups. Decision‐making by public authorities could benefit from the model, for its fine‐grain resolution, open‐source nature, and wide range of features.

     
    more » « less
  5. Abstract The emergency generated by the current COVID-19 pandemic has claimed millions of lives worldwide. There have been multiple waves across the globe that emerged as a result of new variants, due to arising from unavoidable mutations. The existing network toolbox to study epidemic spreading cannot be readily adapted to the study of multiple, coexisting strains. In this context, particularly lacking are models that could elucidate re-infection with the same strain or a different strain—phenomena that we are seeing experiencing more and more with COVID-19. Here, we establish a novel mathematical model to study the simultaneous spreading of two strains over a class of temporal networks. We build on the classical susceptible–exposed–infectious–removed model, by incorporating additional states that account for infections and re-infections with multiple strains. The temporal network is based on the activity-driven network paradigm, which has emerged as a model of choice to study dynamic processes that unfold at a time scale comparable to the network evolution. We draw analytical insight from the dynamics of the stochastic network systems through a mean-field approach, which allows for characterizing the onset of different behavioral phenotypes (non-epidemic, epidemic, and endemic). To demonstrate the practical use of the model, we examine an intermittent stay-at-home containment strategy, in which a fraction of the population is randomly required to isolate for a fixed period of time. 
    more » « less
  6. null (Ed.)
    In an emergency evacuation, people almost always come in close proximity as they quickly leave a built environment under a potential threat. With COVID19, this situation presents yet another challenge: that of getting unintentionally exposed to an infected individual. To assess the epidemiological consequences of an emergency evacuation, we expanded a popular pedestrian dynamic model to enable social distancing during a normal exit and analyze the effect of possible transmission through respiratory droplets and aerosol. Computer simulations point to a troubling outcome, whereby the benefits of a quick exit could be outweighed by the risk of infection. 
    more » « less
  7. null (Ed.)
    To date, the only effective means to respond to the spreading of the COVID-19 pandemic are non-pharmaceutical interventions (NPIs), which entail policies to reduce social activity and mobility restrictions. Quantifying their effect is difficult, but it is key to reducing their social and economic consequences. Here, we introduce a meta-population model based on temporal networks, calibrated on the COVID-19 outbreak data in Italy and applied to evaluate the outcomes of these two types of NPIs. Our approach combines the advantages of granular spatial modelling of meta-population models with the ability to realistically describe social contacts via activity-driven networks. We focus on disentangling the impact of these two different types of NPIs: those aiming at reducing individuals’ social activity, for instance through lockdowns, and those that enforce mobility restrictions. We provide a valuable framework to assess the effectiveness of different NPIs, varying with respect to their timing and severity. Results suggest that the effects of mobility restrictions largely depend on the possibility of implementing timely NPIs in the early phases of the outbreak, whereas activity reduction policies should be prioritized afterwards. 
    more » « less