skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SQUARE-INTEGRABILITY OF THE MIRZAKHANI FUNCTION AND STATISTICS OF SIMPLE CLOSED GEODESICS ON HYPERBOLIC SURFACES
Given integers $$g,n\geqslant 0$$ satisfying $2-2g-n<0$ , let $${\mathcal{M}}_{g,n}$$ be the moduli space of connected, oriented, complete, finite area hyperbolic surfaces of genus $$g$$ with $$n$$ cusps. We study the global behavior of the Mirzakhani function $$B:{\mathcal{M}}_{g,n}\rightarrow \mathbf{R}_{{\geqslant}0}$$ which assigns to $$X\in {\mathcal{M}}_{g,n}$$ the Thurston measure of the set of measured geodesic laminations on $$X$$ of hyperbolic length $${\leqslant}1$$ . We improve bounds of Mirzakhani describing the behavior of this function near the cusp of $${\mathcal{M}}_{g,n}$$ and deduce that $$B$$ is square-integrable with respect to the Weil–Petersson volume form. We relate this knowledge of $$B$$ to statistics of counting problems for simple closed hyperbolic geodesics.  more » « less
Award ID(s):
2003528
PAR ID:
10221480
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Forum of Mathematics, Sigma
Volume:
8
ISSN:
2050-5094
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Using the theory of $${\mathbf {FS}} {^\mathrm {op}}$$ modules, we study the asymptotic behavior of the homology of $${\overline {\mathcal {M}}_{g,n}}$$ , the Deligne–Mumford compactification of the moduli space of curves, for $$n\gg 0$$ . An $${\mathbf {FS}} {^\mathrm {op}}$$ module is a contravariant functor from the category of finite sets and surjections to vector spaces. Via copies that glue on marked projective lines, we give the homology of $${\overline {\mathcal {M}}_{g,n}}$$ the structure of an $${\mathbf {FS}} {^\mathrm {op}}$$ module and bound its degree of generation. As a consequence, we prove that the generating function $$\sum _{n} \dim (H_i({\overline {\mathcal {M}}_{g,n}})) t^n$$ is rational, and its denominator has roots in the set $$\{1, 1/2, \ldots, 1/p(g,i)\},$$ where $p(g,i)$ is a polynomial of order $O(g^2 i^2)$ . We also obtain restrictions on the decomposition of the homology of $${\overline {\mathcal {M}}_{g,n}}$$ into irreducible $$\mathbf {S}_n$$ representations. 
    more » « less
  2. A hypergraph $$\mathcal H$$ is super-pancyclic if for each $$A \subseteq V(\mathcal H)$$ with $$|A| \geqslant 3$$, $$\mathcal H$$ contains a Berge cycle with base vertex set $$A$$. We present two natural necessary conditions for a hypergraph to be super-pancyclic, and show that in several classes of hypergraphs these necessary conditions are also sufficient. In particular, they are sufficient for every hypergraph $$\mathcal H$$ with $$ \delta(\mathcal H)\geqslant \max\{|V(\mathcal H)|, \frac{|E(\mathcal H)|+10}{4}\}$$. We also consider super-cyclic bipartite graphs: those are $(X,Y)$-bigraphs $$G$$ such that for each $$A \subseteq X$$ with $$|A| \geqslant 3$$, $$G$$ has a cycle $$C_A$$ such that $$V(C_A)\cap X=A$$. Such graphs are incidence graphs of super-pancyclic hypergraphs, and our proofs use the language of such graphs. 
    more » « less
  3. Abstract In this paper we prove a result on the effective generation of pluri-canonical linear systems on foliated surfaces of general type. Fix a function {P:\mathbb{Z}_{\geq 0}\to\mathbb{Z}} , then there exists an integer {N>0} such that if {(X,{\mathcal{F}})} is a canonical or nef model of a foliation of general type with Hilbert polynomial {\chi(X,{\mathcal{O}}_{X}(mK_{\mathcal{F}}))=P(m)} for all {m\in\mathbb{Z}_{\geq 0}} , then {|mK_{\mathcal{F}}|} defines a birational map for all {m\geq N} . On the way, we also prove a Grauert–Riemenschneider-type vanishing theorem for foliated surfaces with canonical singularities. 
    more » « less
  4. A bstract We study modular invariants arising in the four-point functions of the stress tensor multiplet operators of the $$ \mathcal{N} $$ N = 4 SU( N ) super-Yang-Mills theory, in the limit where N is taken to be large while the complexified Yang-Mills coupling τ is held fixed. The specific four-point functions we consider are integrated correlators obtained by taking various combinations of four derivatives of the squashed sphere partition function of the $$ \mathcal{N} $$ N = 2 ∗ theory with respect to the squashing parameter b and mass parameter m , evaluated at the values b = 1 and m = 0 that correspond to the $$ \mathcal{N} $$ N = 4 theory on a round sphere. At each order in the 1 /N expansion, these fourth derivatives are modular invariant functions of ( τ, $$ \overline{\tau} $$ τ ¯ ). We present evidence that at half-integer orders in 1 /N , these modular invariants are linear combinations of non-holomorphic Eisenstein series, while at integer orders in 1 /N , they are certain “generalized Eisenstein series” which satisfy inhomogeneous Laplace eigenvalue equations on the hyperbolic plane. These results reproduce known features of the low-energy expansion of the four-graviton amplitude in type IIB superstring theory in ten-dimensional flat space and have interesting implications for the structure of the analogous expansion in AdS 5 × S 5 . 
    more » « less
  5. Abstract We obtain new quantitative estimates on Weyl Law remainders under dynamical assumptions on the geodesic flow. On a smooth compact Riemannian manifold ( M ,  g ) of dimension n , let $$\Pi _\lambda $$ Π λ denote the kernel of the spectral projector for the Laplacian, $$\mathbb {1}_{[0,\lambda ^2]}(-\Delta _g)$$ 1 [ 0 , λ 2 ] ( - Δ g ) . Assuming only that the set of near periodic geodesics over $${W}\subset M$$ W ⊂ M has small measure, we prove that as $$\lambda \rightarrow \infty $$ λ → ∞ $$\begin{aligned} \int _{{W}} \Pi _\lambda (x,x)dx=(2\pi )^{-n}{{\,\textrm{vol}\,}}_{_{{\mathbb {R}}^n}}\!(B){{\,\textrm{vol}\,}}_g({W})\,\lambda ^n+O\Big (\frac{\lambda ^{n-1}}{\log \lambda }\Big ), \end{aligned}$$ ∫ W Π λ ( x , x ) d x = ( 2 π ) - n vol R n ( B ) vol g ( W ) λ n + O ( λ n - 1 log λ ) , where B is the unit ball. One consequence of this result is that the improved remainder holds on all product manifolds, in particular giving improved estimates for the eigenvalue counting function in the product setup. Our results also include logarithmic gains on asymptotics for the off-diagonal spectral projector $$\Pi _\lambda (x,y)$$ Π λ ( x , y ) under the assumption that the set of geodesics that pass near both x and y has small measure, and quantitative improvements for Kuznecov sums under non-looping type assumptions. The key technique used in our study of the spectral projector is that of geodesic beams. 
    more » « less