PremiseSolanaceae is a scientifically and economically important angiosperm family with a minimal fossil record and an intriguing early evolutionary history. Here, we report a newly discovered fossil lantern fruit with a suite of features characteristic of Physalideae within Solanaceae. The fossil comes from the early Eocene Laguna del Hunco site (ca. 52 Ma) in Chubut, Argentina, which previously yielded the only other physaloid fruit fossil,Physalis infinemundi. MethodsThe fruit morphology and calyx venation pattern of the new fossil were compared withP. infinemundiand extant species of Solanaceae. ResultsPhysalis hunickeniisp. nov. is clearly distinct fromP. infinemundiin its fruiting calyx with wider primary veins, longer and thinner lobes, and especially in its venation pattern with high density, transverse tertiary veins; these features support its placement in a new species. In comparison with extant physaloid genera, the calyx venation pattern and other diagnostic traits reinforce placement of the new fossil, likeP. infinemundi, within the tribe Physalideae of Solanaceae. ConclusionsBoth species of fossil nightshades from Laguna del Hunco represent crown‐group Solanaceae but are older than all prior age estimates of the family. Although at least 20 transoceanic dispersals have been proposed as the driver of range expansion of Solanaceae, the Patagonian fossils push back the diversification of the family to Gondwanan times. Thus, overland dispersal across Gondwana is now a likely scenario for at least some biogeographic patterns, in light of the ancient trans‐Antarctic land connections between South America and Australia.
more »
« less
Fossil berries reveal global radiation of the nightshade family by the early Cenozoic
Summary Fossil discoveries can transform our understanding of plant diversification over time and space. Recently described fossils in many plant families have pushed their known records farther back in time, pointing to alternative scenarios for their origin and spread.Here, we describe two new Eocene fossil berries of the nightshade family (Solanaceae) from the Esmeraldas Formation in Colombia and the Green River Formation in Colorado (USA). The placement of the fossils was assessed using clustering and parsimony analyses based on 10 discrete and five continuous characters, which were also scored in 291 extant taxa.The Colombian fossil grouped with members of the tomatillo subtribe, and the Coloradan fossil aligned with the chili pepper tribe. Along with two previously reported early Eocene fossils from the tomatillo genus, these findings indicate that Solanaceae were distributed at least from southern South America to northwestern North America by the early Eocene.Together with two other recently discovered Eocene berries, these fossils demonstrate that the diverse berry clade and, in turn, the entire nightshade family, is much older and was much more widespread in the past than previously thought.
more »
« less
- PAR ID:
- 10414368
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 238
- Issue:
- 6
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 2685-2697
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Cunoniaceae are important elements of rainforests across the Southern Hemisphere. Many of these flowering plants are considered Paleo‐Antarctic Rainforest Lineages that had a Gondwanan distribution since the Paleocene. Fossils of several modern genera within the family, such asCeratopetalum, have indicated biogeographical connections between South America and Australia in the Cenozoic.Here, we report a dramatic geographical range extension forCeratopetalum, and Cunoniaceae as a whole, based on two exceptionally preserved fossil winged fruits from Campanian (c. 82–80 Ma old) deposits on Sucia Island, Washington, USA. The fossils were studied using physical sectioning, light microscopy, micro‐computed tomography scanning and multiple phylogenetic analyses.The fossil fruits share diagnostic characters withCeratopetalumsuch as the presence of four to five persistent calyx lobes, a prominent nectary disk, persistent stamens, a semi‐inferior ovary and two persistent styles. Based on morphological comparisons with fruits of extant species and support from phylogenetic analyses, the fossils are assigned to a new speciesCeratopetalum suciensis.These fossils are the first unequivocal evidence of crown Cunoniaceae from the Cretaceous of North America, indicating a more complicated biogeographical history for this important Gondwanan family.more » « less
-
Summary Fossilized plant–insect herbivore associations provide fundamental information about the assembly of terrestrial communities through geologic time. However, fossil evidence of associations originating in deep time and persisting to the modern day is scarce.We studied the insect herbivore damage found on 284Eucalyptus frenguellianaleaves from the early Eocene Laguna del Hunco rainforest locality in Argentinean Patagonia and compared damage patterns with those observed on extant, rainforest‐associatedEucalyptusspecies from Australasia (> 10 000 herbarium sheets reviewed).In the fossil material, we identified 28 insect herbivory damage types, including 12 types of external feeding, one of piercing‐and‐sucking, five of galls, and 10 of mines. All 28 damage types were observed in the herbarium specimens.The finding of all the fossil damage types on extantEucalyptusspecimens suggests long‐standing associations between multiple insect herbivore lineages and their host genus spanning 52 million years across the Southern Hemisphere. This long‐term persistence, probably enabled through niche conservatism in wet eucalypt forests, demonstrates the imprint of fossil history on the composition of extant insect herbivore assemblages. Although the identities of most insect culprits remain unknown, we provide a list ofEucalyptusspecies and specific population locations to facilitate their discovery, highlighting the relevance of fossils in discovering extant biodiversity.more » « less
-
Summary Lycopodiaceae are one of three surviving families of lycopsids, a lineage of vascular plants with a fossil history dating to at least the Early Devonian or perhaps the Late Silurian (c. 415 Ma). Many fossils have been linked to crown Lycopodiaceae, but the lack of well‐preserved material has hindered definitive recognition of this group in the paleobotanical record.New, exceptionally well‐preserved permineralized lycopsid fossils from the Early Cretaceous (125.6 ± 1.0 Ma) of Inner Mongolia, China, were examined in detail using acetate peel and micro‐computed tomography techniques. The anatomy of extant Lycopodiaceae was analyzed for comparison using fluorescence microscopy. Phylogenetic relationships of the new fossil to extant Lycopodiaceae were evaluated using parsimony and maximum likelihood analyses.Lycopodicaulis oellgaardiigen. et sp. nov. provides the earliest unequivocal and best‐documented evidence of crown Lycopodiaceae and Lycopodioideae, based on anatomically‐preserved fossil material.Recognition ofLycopodicaulisin Asia during the Early Cretaceous indicates the presence of crown Lycopodiaceae at this time, and striking similarities of stem anatomy with extant species provide a framework for the understanding of the interaction of branching and vascular anatomy in crown‐group lycopsids.more » « less
-
Abstract PremiseFossil infructescences and isolated fruits with characters of Malvoideae, a subfamily of Malvaceae (mallow family), were collected from early Eocene sediments in Chubut, Argentina. The main goals of this research are to describe and place these fossils systematically, and to explore their biogeographical implications. MethodsFossils were collected at the Laguna del Hunco site, Huitrera Formation, Chubut, Patagonia, Argentina. They were prepared, photographed, and compared with extant and fossil infructescences and fruits of various families using herbarium material and literature. ResultsThe infructescences are panicles with alternate arrangement of fruits. They bear the fruits on short pedicels that are subtended by a bract; the fruits display an infracarpelar disk and split to the base into five ovate sections interpreted as mericarps. Each mericarp is characterized by an acute apex and the presence of a longitudinal ridge. The isolated fruits show the same features as those on the infructescences. The fossils share unique features with members of the cosmopolitan family Malvaceae, subfamily Malvoideae. ConclusionsThe fossils have a unique combination of characters that does not conform to any previously described genus, justifying the erection of a new genus and species,Uiher karuen. This new taxon constitutes the first known Malvoideae reproductive fossils of the Southern Hemisphere, expanding the distribution of Malvoideae during the early Eocene.more » « less
An official website of the United States government
