Abstract High‐altitude tropical grasslands, known as “páramos,” are characterized by high solar radiation, high precipitation, and low temperature. They also exhibit some of the highest ecosystem carbon stocks per unit area on Earth. Recent observations have shown that páramos may be a net source of CO2to the atmosphere as a result of climate change; however, little is known about the source of this excess CO2in these mountainous environments or which landscape components contribute the most CO2. We evaluated the spatial and temporal variability of surface CO2fluxes to the atmosphere from adjacent terrestrial and aquatic environments in a high‐altitude catchment of Ecuador, based on a suite of field measurements performed during the wet season. Our findings revealed the importance of hydrologic dynamics in regulating the magnitude and likely fate of dissolved carbon in the stream. While headwater catchments are known to contribute disproportionately larger amounts of carbon to the atmosphere than their downstream counterparts, our study highlights the spatial heterogeneity of CO2fluxes within and between aquatic and terrestrial landscape elements in headwater catchments of complex topography. Our findings revealed that CO2evasion from stream surfaces was up to an order of magnitude greater than soil CO2efflux from the adjacent terrestrial environment. Stream carbon flux to the atmosphere appeared to be transport limited (i.e., controlled by flow characteristics, turbulent flow, and water velocity) in the upper reaches of the stream, and source limited (i.e., controlled by CO2and carbon availability) in the lower reaches of the stream. A 4‐m waterfall along the channel accounted for up to 35% of the total evasion observed along a 250‐m stream reach. These findings represent a first step in understanding ecosystem carbon cycling at the interface of terrestrial and aquatic ecosystems in high‐altitude, tropical, headwater catchments.
more »
« less
Flux and stable isotope fractionation of CO2 in a mesic prairie headwater stream
Abstract The carbon dioxide (CO2) fluxes from headwater streams are not well quantified and could be a source of significant carbon, particularly in systems underlain by carbonate lithology. Also, the sensitivity of carbonate systems to changes in temperature will make these fluxes even more significant as climate changes. This study quantifies small-scale CO2 efflux and estimates annual CO2 emission from a headwater stream at the Konza Prairie Long-Term Ecological Research Site and Biological Station (Konza), in a complex terrain of horizontal, alternating limestones and shales with small-scale karst features. CO2 effluxes ranged from 2.2 to 214 g CO2 m−2 day−1 (mean: 20.9 CO2 m−2 day−1). Downstream of point groundwater discharge sources, CO2 efflux decreased, over 2 m, to 3–40% of the point-source flux, while δ13C-CO2 increased, ranging from −9.8 ‰ to −23.2 ‰ V-PDB. The δ13C-CO2 increase was not strictly proportional to the CO2 flux but related to the origin of vadose zone CO2. The high spatial and temporal variability of CO2 efflux from this headwater stream informs those doing similar measurements and those working on upscaling stream data, that local variability should be assessed to estimate the impact of headwater stream CO2 efflux on the global carbon cycle.
more »
« less
- Award ID(s):
- 2025849
- PAR ID:
- 10414557
- Publisher / Repository:
- DOI PREFIX: 10.2166
- Date Published:
- Journal Name:
- Journal of Water and Climate Change
- Volume:
- 14
- Issue:
- 6
- ISSN:
- 2040-2244
- Page Range / eLocation ID:
- p. 1961-1976
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Woody encroachment is a widespread phenomenon in grassland ecosystems, driven by overgrazing, fire suppression, nitrogen deposition and climate change, among other environmental changes. The influence of woody encroachment on processes such as chemical weathering however is poorly understood. In particular, for fast reactions such as carbonate weathering, root traits associated with woody encroachment (e.g., coarser, deeper, and longer residence times) can potentially change fluxes of inorganic carbon into streams and back to the atmosphere, providing CO2-climate feedbacks. Here we examine the influence of deepening roots arising from woody encroachment on catchment water balance and carbonate weathering rates at Konza a tallgrass prairie within a carbonate terrain where woody encroachment is suspected to drive the groundwater alkalinity upwards. We use a watershed reactive transport model BioRT-Flux-PIHM to understand the ramifications of deepening roots. Stream discharge and evapotranspiration (ET) measurements were used to calibrate the hydrology model. The subsurface CO2 concentration, water quality data for groundwater, stream, soil water and precipitation were used to constrain the soil respiration and carbonate dissolution reaction rates. The hydrology model has a Nash-Sutcliffe Efficiency value of 0.88. Modelling results from numerical experiments indicate that woody encroachment results in overall lower stream flow due to higher ET, yet the groundwater recharge is higher due to deep macropore development from deepening roots. The deeper macropores enhance carbonate weathering rate as more acidic, CO2-rich water recharges the deeper calcite bedrock. Accounting for the change in inorganic carbon fluxes caused by such land use changes gives a better estimate of carbon fluxes in the biosphere. Such knowledge is essential for effective planning of climate change mitigation strategies.more » « less
-
Small ponds account for a disproportionately high percentage of carbon dioxide emissions relative to their small surface area. It is therefore crucial to understand carbon flow in these ponds to refine the current global carbon budget, especially because climate change is affecting pond hydrology. High elevation ponds in the Elk Mountains of western Colorado are drying more frequently as the timing of snowmelt advances. We compared CO2 concentrations and fluxes among ponds of different hydroperiods over diel sampling periods during the course of the 2017 open-water period. CO2 concentrations were significantly negatively correlated with pond depth and averaged 77.6 ± 24.5 μmol L−1 (mean ± S.E.) across all ponds and sampling events. Ponds were up to twenty times supersaturated in CO2 with respect to the atmosphere. Flux was highly variable within individual ponds but correlated with time of sampling and was highest at night. Flux averaged 19.7 ± 18.8 mg CO2 m−2 h−1 across all ponds and sampling events. We also compared flux values obtained using modeled and empirical methods and found that widely-applied models of gas exchange rates using wind-based gas exchange (K) values yielded estimates of CO2 flux that were significantly higher than those obtained using the floating chamber approach, but estimates of CO2 flux using globally averaged convection-based K values were lower than those obtained using the floating chambers. Lastly, we integrated soil vs. water efflux measurements with long-term patterns in hydrology to predict how total season-long efflux might change under the more rapid drying regimes and longer seasons that are already occurring in these systems. Because soil CO2 efflux averaged 277.0 ± 49.0 mg CO2 m−2 h−1, temporary ponds emitted 674.1 ± 99.4 kg CO2 m−2 over the course of the 2017 season from ice-out to refreezing, which was over twice as much as permanent and semi-permanent ponds. Our results emphasize that contributions of CO2 from small ponds to the global carbon budget estimates will vary with pond hydroperiod and sampling methodology, which have been overlooked given that most previous estimates were collected from limited sampling periods and from pond waters alone. Furthermore, pond CO2 contributions are predicted to increase over time as pond areas transition from efflux from water to efflux from soil.more » « less
-
Abstract Coastal salt marshes store large amounts of carbon but the magnitude and patterns of greenhouse gas (GHG; i.e., carbon dioxide (CO2) and methane (CH4)) fluxes are unclear. Information about GHG fluxes from these ecosystems comes from studies of sediments or at the ecosystem‐scale (eddy covariance) but fluxes from tidal creeks are unknown. We measured GHG concentrations in water, water quality, meteorological parameters, sediment CO2efflux, ecosystem‐scale GHG fluxes, and plant phenology; all at half‐hour intervals over 1 year. Manual creek GHG flux measurements were used to calculate gas transfer velocity (k) and parameterize a model of water‐to‐atmosphere GHG fluxes. The creek was a source of GHGs to the atmosphere where tidal patterns controlled diel variability. Dissolved oxygen and wind speed were negatively correlated with creek CH4efflux. Despite lacking a seasonal pattern, creek CO2efflux was correlated with drivers such as turbidity across phenological phases. Overall, nighttime creek CO2efflux (3.6 ± 0.63 μmol/m2/s) was at least 2 times higher than nighttime marsh sediment CO2efflux (1.5 ± 1.23 μmol/m2/s). Creek CH4efflux (17.5 ± 6.9 nmol/m2/s) was 4 times lower than ecosystem‐scale CH4fluxes (68.1 ± 52.3 nmol/m2/s) across the year. These results suggest that tidal creeks are potential hotspots for CO2emissions and could contribute to lateral transport of CH4to the coastal ocean due to supersaturation of CH4(>6,000 μmol/mol) in water. This study provides insights for modeling GHG efflux from tidal creeks and suggests that changes in tide stage overshadow water temperature in determining magnitudes of fluxes.more » « less
-
null (Ed.)Abstract. Carbonate weathering is essential in regulating atmosphericCO2 and carbon cycle at the century timescale. Plant roots accelerateweathering by elevating soil CO2 via respiration. It however remainspoorly understood how and how much rooting characteristics (e.g., depth anddensity distribution) modify flow paths and weathering. We address thisknowledge gap using field data from and reactive transport numericalexperiments at the Konza Prairie Biological Station (Konza), Kansas (USA), asite where woody encroachment into grasslands is surmised to deepen roots. Results indicate that deepening roots can enhance weathering in two ways.First, deepening roots can control thermodynamic limits of carbonatedissolution by regulating how much CO2 transports vertical downward tothe deeper carbonate-rich zone. The base-case data and model from Konzareveal that concentrations of Ca and dissolved inorganic carbon (DIC) areregulated by soil pCO2 driven by the seasonal soil respiration. Thisrelationship can be encapsulated in equations derived in this workdescribing the dependence of Ca and DIC on temperature and soil CO2. The relationship can explain spring water Ca and DIC concentrations from multiple carbonate-dominated catchments. Second, numericalexperiments show that roots control weathering rates by regulating recharge(or vertical water fluxes) into the deeper carbonate zone and exportreaction products at dissolution equilibrium. The numerical experimentsexplored the potential effects of partitioning 40 % of infiltrated waterto depth in woodlands compared to 5 % in grasslands. Soil CO2 datasuggest relatively similar soil CO2distribution over depth, which in woodlands and grasslands leads only to 1 % to∼ 12 % difference inweathering rates if flow partitioning was kept the same between the two landcovers. In contrast, deepening roots can enhance weathering by ∼ 17 % to200 % as infiltration rates increased from 3.7 × 10−2 to 3.7 m/a. Weathering rates in these cases however are more than an order of magnitude higher than a case without roots atall, underscoring the essential role of roots in general. Numericalexperiments also indicate that weathering fronts in woodlands propagated> 2 times deeper compared to grasslands after 300 years at aninfiltration rate of 0.37 m/a. These differences in weathering fronts areultimately caused by the differences in the contact times of CO2-charged water with carbonate in the deep subsurface. Within the limitation of modeling exercises, these data and numerical experiments prompt the hypothesis that (1) deepening roots in woodlands can enhance carbonate weathering by promotingrecharge and CO2–carbonate contact in the deepsubsurface and (2) the hydrological impacts of rooting characteristics canbe more influential than those of soil CO2 distribution in modulatingweathering rates. We call for colocated characterizations of roots,subsurface structure, and soil CO2 levels, as well as their linkage to waterand water chemistry. These measurements will be essential to illuminatefeedback mechanisms of land cover changes, chemical weathering, globalcarbon cycle, and climate.more » « less
An official website of the United States government
