Ultrasound computed tomography (USCT) is one of the advanced imaging techniques used in structural health monitoring (SHM) and medical imaging due to its relatively low-cost, rapid data acquisition process. The time-domain full waveform inversion (TDFWI) method, an iterative inversion approach, has shown great promise in USCT. However, such an iterative process can be very time-consuming and computationally expensive but can be greatly accelerated by integrating an AI-based approach (e.g., convolution neural network (CNN)). Once trained, the CNN model takes low-iteration TDFWI images as input and instantaneously predicts material property distribution within the scanned region. Nevertheless, the quality of the reconstruction with the current CNN degrades with the increased complexity of material distributions. Another challenge is the availability of enough experimental data and, in some cases, even synthetic surrogate data. To alleviate these issues, this paper details a systematic study of the enhancement effect of a 2D CNN (U-Net) by improving the quality with limited training data. To achieve this, different augmentation schemes (flipping and mixing existing data) were implemented to increase the amount and complexity of the training datasets without generating a substantial number of samples. The objective was to evaluate the enhancement effect of these augmentation techniques on the performance of the U-Net model at FWI iterations. A thousand numerically built samples with acoustic material properties are used to construct multiple datasets from different FWI iterations. A parallelized, high-performance computing (HPC) based framework has been created to rapidly generate the training data. The prediction results were compared against the ground truth images using standard matrices, such as the structural similarity index measure (SSIM) and average mean square error (MSE). The results show that the increased number of samples from augmentations improves shape imaging of the complex regions even with a low iteration FWI training data.
more »
« less
Full Waveform Inversion-Based Ultrasound Computed Tomography Acceleration Using Two-Dimensional Convolutional Neural Networks
Abstract Ultrasound computed tomography (USCT) shows great promise in nondestructive evaluation and medical imaging due to its ability to quickly scan and collect data from a region of interest. However, existing approaches are a tradeoff between the accuracy of the prediction and the speed at which the data can be analyzed, and processing the collected data into a meaningful image requires both time and computational resources. We propose to develop convolutional neural networks (CNNs) to accelerate and enhance the inversion results to reveal underlying structures or abnormalities that may be located within the region of interest. For training, the ultrasonic signals were first processed using the full waveform inversion (FWI) technique for only a single iteration; the resulting image and the corresponding true model were used as the input and output, respectively. The proposed machine learning approach is based on implementing two-dimensional CNNs to find an approximate solution to the inverse problem of a partial differential equation-based model reconstruction. To alleviate the time-consuming and computationally intensive data generation process, a high-performance computing-based framework has been developed to generate the training data in parallel. At the inference stage, the acquired signals will be first processed by FWI for a single iteration; then the resulting image will be processed by a pre-trained CNN to instantaneously generate the final output image. The results showed that once trained, the CNNs can quickly generate the predicted wave speed distributions with significantly enhanced speed and accuracy.
more »
« less
- Award ID(s):
- 2152764
- PAR ID:
- 10414757
- Date Published:
- Journal Name:
- Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
- Volume:
- 6
- Issue:
- 4
- ISSN:
- 2572-3901
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
SUMMARY Non-invasive subsurface imaging using full waveform inversion (FWI) has the potential to fundamentally change near-surface (<30 m) site characterization by enabling the recovery of high-resolution (metre-scale) 2-D/3-D maps of subsurface elastic material properties. Yet, FWI results are quite sensitive to their starting model due to their dependence on local-search optimization techniques and inversion non-uniqueness. Starting model dependence is particularly problematic for near-surface FWI due to the complexity of the recorded seismic wavefield (e.g. dominant surface waves intermixed with body waves) and the potential for significant spatial variability over short distances. In response, convolutional neural networks (CNNs) are investigated as a potential tool for developing starting models for near-surface 2-D elastic FWI. Specifically, 100 000 subsurface models were generated to be representative of a classic near-surface geophysics problem; namely, imaging a two-layer, undulating, soil-over-bedrock interface. A CNN has been developed from these synthetic models that is capable of transforming an experimental wavefield acquired using a seismic source located at the centre of a linear array of 24 closely spaced surface sensors directly into a robust starting model for FWI. The CNN approach was able to produce 2-D starting models with seismic image misfits that were significantly less than the misfits from other common starting model approaches, and in many cases even less than the misfits obtained by FWI with inferior starting models. The ability of the CNN to generalize outside its two-layered training set was assessed using a more complex, three-layered, soil-over-bedrock formation. While the predictive ability of the CNN was slightly reduced for this more complex case, it was still able to achieve seismic image and waveform misfits that were comparable to other commonly used starting models, despite not being trained on any three-layered models. As such, CNNs show great potential as tools for rapidly developing robust, site-specific starting models for near-surface elastic FWI.more » « less
-
In this paper, we will explore the possibility of synthesizing the low-frequency data from the high-frequency data. The synthesized low-frequency data are used to improve the full-waveform inversion (FWI). Unlike all previously methods, to the best of our knowledge, this is the first attempt to utilize a data driven approach to solve the problem. We propose to learn the low wavenumber information in FWI via the Deep Inception based Convolutional Networks. Once the deep learning network is sufficiently trained, the network can be used to predicted the low-frequency data with high accuracy on a completely different unknown velocity model. In the end, we validate the quality of the predicted low-frequency data and the robustness of this deep learning approach.more » « less
-
Producing dense 3D reconstructions from biological imaging data is a challenging instance segmentation task that requires significant ground-truth training data for effective and accurate deep learning-based models. Generating training data requires intense human effort to annotate each instance of an object across serial section images. Our focus is on the especially complicated brain neuropil, comprising an extensive interdigitation of dendritic, axonal, and glial processes visualized through serial section electron microscopy. We developed a novel deep learning-based method to generate dense 3D segmentations rapidly from sparse 2D annotations of a few objects on single sections. Models trained on the rapidly generated segmentations achieved similar accuracy as those trained on expert dense ground-truth annotations. Human time to generate annotations was reduced by three orders of magnitude and could be produced by non-expert annotators. This capability will democratize generation of training data for large image volumes needed to achieve brain circuits and measures of circuit strengths.more » « less
-
Implementing local contextual guidance principles in a single-layer CNN architecture, we propose an efficient algorithm for developing broad-purpose representations (i.e., representations transferable to new tasks without additional training) in shallow CNNs trained on limited-size datasets. A contextually guided CNN (CG-CNN) is trained on groups of neighboring image patches picked at random image locations in the dataset. Such neighboring patches are likely to have a common context and therefore are treated for the purposes of training as belonging to the same class. Across multiple iterations of such training on different context-sharing groups of image patches, CNN features that are optimized in one iteration are then transferred to the next iteration for further optimization, etc. In this process, CNN features acquire higher pluripotency, or inferential utility for any arbitrary classification task. In our applications to natural images and hyperspectral images, we find that CG-CNN can learn transferable features similar to those learned by the first layers of the well-known deep networks and produce favorable classification accuracies.more » « less
An official website of the United States government

