The varied atomic arrangements in face-centered cubic (FCC) solid solutions introduce atomic-scale fluctuations to their energy landscapes that influence the operation of dislocation-mediated deformation mechanisms. These effects are particularly pronounced in concentrated systems, which are of considerable interest to the community. Here, we examine the effect of local fluctuations in planar fault energies on the evolution of deformation twinning microstructures in randomly arranged FCC solid solutions. Our approach leverages the kinetic Monte Carlo (kMC) method to provide kinetically weighted predictions for competition between two processes: deformation twin nucleation and deformation twin thickening. The kinetic barriers underpinning each process are drawn from the statistics of planar fault energies, which are locally sampled using molecular statics methods. kMC results show an increase in the fault number densities of solid solutions relative to a homogenized reference, which is found to be driven by the fluctuations in planar fault energies. Based on kMC relations, an effective barrier model is derived to predict the competition between deformation twinning nucleation and thickening processes under a fluctuating planar fault energy landscape. A key result from this model is a measurement of the length-scale over which the influence of local fluctuations in planar fault energies diminish and nucleation/thickening-dominated behaviors converge to bulk predictions. More broadly, the tools developed in this study enable examination of the influence of chemistry and length-scale on the evolution of deformation twinning mechanisms in FCC solid solutions.
more »
« less
Exploring canyons in glassy energy landscapes using metadynamics
The complex physics of glass-forming systems is controlled by the structure of the low-energy portions of their potential energy landscapes. Here we report that a modified metadynamics algorithm efficiently explores and samples low-energy regions of such high-dimensional landscapes. In the energy landscape for a model foam, our algorithm finds and descends meandering canyons in the landscape, which contain dense clusters of energy minima along their floors. Similar canyon structures in the energy landscapes of two model glass formers—hard sphere fluids and the Kob–Andersen glass—allow us to reach high densities and low energies, respectively. In the hard sphere system, fluid configurations are found to form continuous regions that cover the canyon floors up to densities well above the jamming transition. For the Kob–Andersen glass former, our technique samples low-energy states with modest computational effort, with the lowest energies found approaching the predicted Kauzmann limit.
more »
« less
- Award ID(s):
- 1720530
- PAR ID:
- 10414861
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 43
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Advanced polymers with high energy density and high efficiency are urgently needed in pulse power capacitor applications. Here, we present a practical design approach towards all-organic polymers with high energy density and high efficiency by enhancing dipolar polarization at the molecular level. Flexible segments were introduced into the backbones of rigid polar aromatic polymers to increase the flexibility of dipoles. Dielectric spectroscopy measurements of designed polymers revealed multiple strong sub-glass transition (sub- T g ) relaxation peaks with low activation energies, which indicated the enhanced movement freedom of dipoles below the glass transition temperature. As a result, dielectric constants were increased up to 46% when compared with their base polymers and D – E loop measurements showed that all these designed polymers had high energy densities above 11 J cm −3 with efficiencies above 90%. These results unveiled a novel approach towards high dielectric constant organic polymers for electrical energy storage.more » « less
-
We present a simple model system with four hard disks moving in a circular region for which free-energy landscapes can be directly calculated and visualized in two and three dimensions. We construct several energy landscapes for our system, and we explore the strengths and limitations of each in terms of understanding system dynamics, in particular the relationship between state transitions and free-energy barriers. We also demonstrate the importance of distinguishing between system dynamics in real space and those in landscape coordinates, and we show that care must be taken to appropriately combine dynamics with barrier properties to understand the transition rates. This simple model provides an intuitive way to understand free-energy landscapes, and it illustrates the benefits that free-energy landscapes can have over potential energy landscapes.more » « less
-
Accurate modeling of conformational energies is key to the crystal structure prediction of conformational polymorphs. Focusing on molecules XXXI and XXXII from the 7th Blind Test of Crystal Structure Prediction, this study employs various electronic structure methods up to the level of domain-local pair natural orbital coupled cluster singles and doubles with perturbative triples (DLPNO-CCSD(T1)) to benchmark the conformational energies and to assess their impact on the crystal energy landscapes. Molecule XXXI proves to be a relatively straightforward case, with the conformational energies from generalized gradient approximation (GGA) functional B86bPBE-XDM changing only modestly when using more advanced density functionals such as PBE0-D4, wB97M-V, and revDSD-PBEP86-D4, dispersion-corrected second-order Moller-Plesset perturbation theory (SCS-MP2D), or DLPNO-CCSD(T1). In contrast, the conformational energies of molecule XXXII prove difficult to determine reliably, and variations in the computed conformational energies appreciably impact the crystal energy landscape. Even high-level methods such as revDSD-PBEP86-D4 and SCS-MP2D exhibit significant disagreements with the DLPNO-CCSD(T1) benchmarks, highlighting the difficulty of predicting conformational energies for complex, drug-like molecules. The best-converged predicted crystal energy landscape obtained here for molecule XXXII here disagrees significantly with what has been inferred about the solid-form landscape experimentally. The identified limitations of the calculations are probably insufficient to account for the discrepancies between theory and experiment on molecule XXXII, and further investigation of the experimental solid-form landscape would be valuable. Finally, assessment of several semi-empirical methods finds r2SCAN-3c to be the most promising, with conformational energy accuracy intermediate between the GGA and hybrid functionals and a low computational cost.more » « less
-
Megow, Nicole ; Smith, Adam (Ed.)We provide a perfect sampling algorithm for the hard-sphere model on subsets of R^d with expected running time linear in the volume under the assumption of strong spatial mixing. A large number of perfect and approximate sampling algorithms have been devised to sample from the hard-sphere model, and our perfect sampling algorithm is efficient for a range of parameters for which only efficient approximate samplers were previously known and is faster than these known approximate approaches. Our methods also extend to the more general setting of Gibbs point processes interacting via finite-range, repulsive potentials.more » « less