skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: ToF-SIMS Depth Profiling to Measure Nanoparticle and Polymer Diffusion in Polymer Melts
Award ID(s):
1720530 2152205 1905912 2034122
PAR ID:
10415019
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Macromolecules
Volume:
56
Issue:
6
ISSN:
0024-9297
Page Range / eLocation ID:
2277 to 2285
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. null (Ed.)
  3. Matyjaszewski, Krzysztof; Gnanou, Yves; Hadjichristidis, Nikos; Muthukumar, Murugappan (Ed.)
    Polymers exist in the glass state for a wide range of applications. The slow and limited crystallizability of polymers means that solid polymer materials are either wholly or in part glassy, giving them great importance. The glass is a nonequilibrium amorphous state that occurs because the cooperative molecular dynamics become kinetically trapped on cooling as the available thermal energy for molecular motion decreases. This article aims to provide the reader with a molecular picture of what this packing frustration that causes glass formation means for polymers. Experimental considerations for accurately measuring the glass transition temperature 𝑇𝑔 given this nonequilibrium nature will be discussed. Basic concepts underpinning theoretical efforts to model the glass transition will be summarized to provide the reader with a lexicon and paradigm for understanding different approaches used in the field to capture the main characteristics of glasses. Current research areas of interest in polymer glasses will be briefly outlined. Hopefully, this article will provide the beginning investigator a starting point for their own studies. 
    more » « less