This content will become publicly available on March 1, 2024
- Award ID(s):
- 1933487
- NSF-PAR ID:
- 10415533
- Date Published:
- Journal Name:
- Surface Topography: Metrology and Properties
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2051-672X
- Page Range / eLocation ID:
- 014010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Silicone elastomer medical implants are ubiquitous in medicine, particularly for breast augmentation. However, when these devices are placed within the body, disruption of the natural biological interfaces occurs, which significantly changes the native energy-dissipation mechanisms of living systems. These new interfaces can introduce non-physiological contact pressures and tribological conditions that provoke inflammation and soft tissue damage. Despite their significance, the biotribological properties of implant-tissue and implant-extracellular matrix (ECM) interfaces remain poorly understood. Here, we developed an in vitro model of soft tissue damage using a custom-built in situ biotribometer mounted onto a confocal microscope. Sections of commercially-available silicone breast implants with distinct and clinically relevant surface roughness ([Formula: see text]m, [Formula: see text]m, and [Formula: see text]m) were mounted to spherically-capped hydrogel probes and slid against collagen-coated hydrogel surfaces as well as healthy breast epithelial (MCF10A) cell monolayers to model implant-ECM and implant-tissue interfaces. In contrast to the “smooth” silicone implants ([Formula: see text]m), we demonstrate that the “microtextured” silicone implant ([Formula: see text]m) induced higher frictional shear stress ([Formula: see text] Pa), which led to greater collagen removal and cell rupture/delamination. Our studies may provide insights into post-implantation tribological interactions between silicone breast implants and soft tissues.more » « less
-
Numerous experimental and computational studies show that continuous hopper flows of granular materials obey the Beverloo equation that relates the volume flow rate Q and the orifice width w : Q ∼ ( w / σ avg − k ) β , where σ avg is the average particle diameter, kσ avg is an offset where Q ∼ 0, the power-law scaling exponent β = d − 1/2, and d is the spatial dimension. Recent studies of hopper flows of deformable particles in different background fluids suggest that the particle stiffness and dissipation mechanism can also strongly affect the power-law scaling exponent β . We carry out computational studies of hopper flows of deformable particles with both kinetic friction and background fluid dissipation in two and three dimensions. We show that the exponent β varies continuously with the ratio of the viscous drag to the kinetic friction coefficient, λ = ζ / μ . β = d − 1/2 in the λ → 0 limit and d − 3/2 in the λ → ∞ limit, with a midpoint λ c that depends on the hopper opening angle θ w . We also characterize the spatial structure of the flows and associate changes in spatial structure of the hopper flows to changes in the exponent β . The offset k increases with particle stiffness until k ∼ k max in the hard-particle limit, where k max ∼ 3.5 is larger for λ → ∞ compared to that for λ → 0. Finally, we show that the simulations of hopper flows of deformable particles in the λ → ∞ limit recapitulate the experimental results for quasi-2D hopper flows of oil droplets in water.more » « less
-
Abstract Theory and experiments indicate that ice–bed separation during glacier slip over 2-D hard beds causes basal shear stress to reach a maximum at a particular slip velocity and decrease at higher velocities. We use the sliding theory of Lliboutry (1968) to explore how friction between debris particles in sliding ice and a rock bed affects this relationship between shear stress and slip velocity. Particle–bed contact forces and associated debris friction increase with increasing slip velocity, owing to increased rates of ice convergence with up-glacier facing surfaces. However, debris friction on diminished areas of the bed counteracts this effect as cavities grow. Thus, friction from debris alone increases only slightly with slip velocity, and for sediment particles larger than ~60 mm in diameter, debris friction peaks and decreases with increasing slip velocity. The effect on the sliding relationship is to steepen its rising limb and shift its shear stress peak to a slightly higher velocity. These results, which exclude the effect of debris friction on cavity size and debris concentrations above ~15%, indicate that the effect of debris in ice is to increase basal shear stress but not significantly change the form of the sliding relationship.more » « less
-
Abstract Heterotrophic microbes initiate the degradation of high molecular weight organic matter using extracellular enzymes. Our understanding of differences in microbial enzymatic capabilities, especially among particle‐associated taxa and in the deep ocean, is limited by a paucity of hydrolytic enzyme activity measurements. Here, we measured the activities of a broad range of hydrolytic enzymes (glucosidases, peptidases, polysaccharide hydrolases) in epipelagic to bathypelagic bulk water (nonsize‐fractionated), and on particles (≥ 3
μ m) along a 9800 km latitudinal transect from 30°S in the South Pacific to 59°N in the Bering Sea. Individual enzyme activities showed heterogeneous latitudinal and depth‐related patterns, with varying biotic and abiotic correlates. With increasing latitude and decreasing temperature, lower laminarinase activities sharply contrasted with higher leucine aminopeptidase (leu‐AMP) and chondroitin sulfate hydrolase activities in bulk water. Endopeptidases (chymotrypsins, trypsins) exhibited patchy spatial patterns, and their activities can exceed rates of the widely measured exopeptidase, leu‐AMP. Compared to bulk water, particle‐associated enzymatic profiles featured a greater relative importance of endopeptidases, as well as a broader spectrum of polysaccharide hydrolases in some locations, and latitudinal and depth‐related trends that are likely consequences of varying particle fluxes. As water depth increased, enzymatic spectra on particles and in bulk water became narrower, and diverged more from one another. These distinct latitudinal and depth‐related gradients of enzymatic activities underscore the biogeochemical consequences of emerging global patterns of microbial community structure and function, from surface to deep waters, and among particle‐associated taxa. -
Abstract The present study uses eddy‐resolving numerical simulations to investigate how bed roughness affects flow and turbulence structure around an isolated, partially‐buried mussel (
Unio elongatulus ) aligned with the incoming flow. The rough‐bed simulations resolve the flow past the exposed part of a gravel bed, whose surface is obtained from a laboratory experiment that also provides some additional data for validation of the numerical model. Results are also discussed for the limiting case of a horizontal smooth bed. Additionally, the effects of varying the level of burial of the mussel inside the substrate and the discharge through the two mussel siphons are investigated via a set of simulations in which the ratio between the median diameter of the (gravel) particles forming the rough bed,d 50, and the height of the exposed part of the mussel,h , varies between 0.10 and 0.22. The increase of the bed roughness is associated with a strong amplification of the turbulence kinetic energy in the near‐wake region. Increasing the bed roughness and/or reducingh intensifies the interactions of the eddies generated by the bed particles with the base and tip vortices induced by the active filtering and by the mussel shell, respectively, which, in turn, induces a more rapid dissipation of these vortices. Increasing the bed roughness also reduces the strength of the main downwelling flow region forming in the wake. The strong downwelling near the symmetry plane is the main reason why the symmetric wake shedding mode dominates in the smooth bed simulations with negligible active filtering. By contrast, the anti‐symmetric wake shedding mode dominates in the simulations conduced with a high value of the bed roughness. The mean streamwise drag force coefficient for the emerged part of the shell and the dilution of the excurrent siphon jet increase with increasing bed roughness.