skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Perspectives on field-free spin–orbit torque devices for memory and computing applications
The emergence of embedded magnetic random-access memory (MRAM) and its integration in mainstream semiconductor manufacturing technology have created an unprecedented opportunity for engineering computing systems with improved performance, energy efficiency, lower cost, and unconventional computing capabilities. While the initial interest in the existing generation of MRAM—which is based on the spin-transfer torque (STT) effect in ferromagnetic tunnel junctions—was driven by its nonvolatile data retention and lower cost of integration compared to embedded Flash (eFlash), the focus of MRAM research and development efforts is increasingly shifting toward alternative write mechanisms (beyond STT) and new materials (beyond ferromagnets) in recent years. This has been driven by the need for better speed vs density and speed vs endurance trade-offs to make MRAM applicable to a wider range of memory markets, as well as to utilize the potential of MRAM in various unconventional computing architectures that utilize the physics of nanoscale magnets. In this Perspective, we offer an overview of spin–orbit torque (SOT) as one of these beyond-STT write mechanisms for the MRAM devices. We discuss, specifically, the progress in developing SOT-MRAM devices with perpendicular magnetization. Starting from basic symmetry considerations, we discuss the requirement for an in-plane bias magnetic field which has hindered progress in developing practical SOT-MRAM devices. We then discuss several approaches based on structural, magnetic, and chiral symmetry-breaking that have been explored to overcome this limitation and realize bias-field-free SOT-MRAM devices with perpendicular magnetization. We also review the corresponding material- and device-level challenges in each case. We then present a perspective of the potential of these devices for computing and security applications beyond their use in the conventional memory hierarchy.  more » « less
Award ID(s):
1853879 2203243
NSF-PAR ID:
10415580
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
133
Issue:
4
ISSN:
0021-8979
Page Range / eLocation ID:
040902
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract All-electrical driven magnetization switching attracts much attention in next-generation spintronic memory and logic devices, particularly in magnetic random-access memory (MRAM) based on the spin–orbit torque (SOT), i.e. SOT-MRAM, due to its advantages of low power consumption, fast write/read speed, and improved endurance, etc. For conventional SOT-driven switching of the magnet with perpendicular magnetic anisotropy, an external assisted magnetic field is necessary to break the inversion symmetry of the magnet, which not only induces the additional power consumption but also makes the circuit more complicated. Over the last decade, significant effort has been devoted to field-free magnetization manipulation by using SOT. In this review, we introduce the basic concepts of SOT. After that, we mainly focus on several approaches to realize the field-free deterministic SOT switching of the perpendicular magnet. The mechanisms mainly include mirror symmetry breaking, chiral symmetry breaking, exchange bias, and interlayer exchange coupling. Furthermore, we show the recent progress in the study of SOT with unconventional origin and symmetry. The final section is devoted to the industrial-level approach for potential applications of field-free SOT switching in SOT-MRAM technology. 
    more » « less
  2. Abstract

    This article discusses the current state of development, open research opportunities, and application perspectives of electric‐field‐controlled magnetic tunnel junctions that use the voltage‐controlled magnetic anisotropy effect to control their magnetization. The integration of embedded magnetic random‐access memory (MRAM) into mainstream semiconductor foundry manufacturing opens new possibilities for the development of energy‐efficient, high‐performance, and intelligent computing systems. The current generation of MRAM, which uses the current‐controlled spin‐transfer torque (STT) effect to write information, has gained traction due to its nonvolatile data retention and lower integration cost compared to embedded Flash. However, scaling MRAM to high bit densities will likely require a transition from current‐controlled to voltage‐controlled operation. In this perspective, an overview of voltage‐controlled magnetic anisotropy (VCMA) as a promising beyond‐STT write mechanism for MRAM devices is provided and recent advancements in developing VCMA‐MRAM devices with perpendicular magnetization are highlighted. Starting from the fundamental mechanisms, the key remaining challenges of VCMA‐MRAM, such as increasing the VCMA coefficient, controlling the write error rate, and achieving field‐free VCMA switching are discussed. Then potential solutions are discussed and open research questions are highlighted. Lastly, prospective applications of voltage‐controlled magnetic tunnel junctions (VC‐MTJs) in security applications, extending beyond their traditional role as memory devices are explored.

     
    more » « less
  3. We offer a perspective on the prospects of ultrafast spintronics and opto-magnetism as a pathway to high-performance, energy-efficient, and non-volatile embedded memory in digital integrated circuit applications. Conventional spintronic devices, such as spin-transfer-torque magnetic-resistive random-access memory (STT-MRAM) and spin–orbit torque MRAM, are promising due to their non-volatility, energy-efficiency, and high endurance. STT-MRAMs are now entering into the commercial market; however, they are limited in write speed to the nanosecond timescale. Improvement in the write speed of spintronic devices can significantly increase their usefulness as viable alternatives to the existing CMOS-based devices. In this article, we discuss recent studies that advance the field of ultrafast spintronics and opto-magnetism. An optimized ferromagnet–ferrimagnet exchange-coupled magnetic stack, which can serve as the free layer of a magnetic tunnel junction (MTJ), can be optically switched in as fast as ∼3 ps. Integration of ultrafast magnetic switching of a similar stack into an MTJ device has enabled electrical readout of the switched state using a relatively larger tunneling magnetoresistance ratio. Purely electronic ultrafast spin–orbit torque induced switching of a ferromagnet has been demonstrated using ∼6 ps long charge current pulses. We conclude our Perspective by discussing some of the challenges that remain to be addressed to accelerate ultrafast spintronics technologies toward practical implementation in high-performance digital information processing systems.

     
    more » « less
  4. Spin currents are used to write information in magnetic random access memory (MRAM) devices by switching the magnetization direction of one of the ferromagnetic electrodes of a magnetic tunnel junction (MTJ) nanopillar. Different physical mechanisms of conversion of charge current to spin current can be used in two-terminal and three-terminal device geometries. In two-terminal devices, charge-to-spin conversion occurs by spin filtering in the MTJ's ferromagnetic electrodes and present day MRAM devices operate near the theoretically expected maximum charge-to-spin conversion efficiency. In three-terminal devices, spin–orbit interactions in a channel material can also be used to generate large spin currents. In this Perspective article, we discuss charge-to-spin conversion processes that can satisfy the requirements of MRAM technology. We emphasize the need to develop channel materials with larger charge-to-spin conversion efficiency—that can equal or exceed that produced by spin filtering—and spin currents with a spin polarization component perpendicular to the channel interface. This would enable high-performance devices based on sub-20 nm diameter perpendicularly magnetized MTJ nanopillars without need of a symmetry breaking field. We also discuss MRAM characteristics essential for CMOS integration. Finally, we identify critical research needs for charge-to-spin conversion measurements and metrics that can be used to optimize device channel materials and interface properties prior to full MTJ nanopillar device fabrication and characterization. 
    more » « less
  5. Switching of perpendicular magnetization via spin–orbit torque (SOT) is of particular interest in the development of non-volatile magnetic random access memory (MRAM) devices. We studied current-induced magnetization switching of Ir/GdFeCo/Cu/Pt heterostructures in a Hall cross geometry as a function of the in-plane applied magnetic field. Remarkably, magnetization switching is observed at zero applied field. This is shown to result from the competition between SOT, the Oersted field generated by the charge current, and the material's coercivity. Our results show a means of achieving zero-field switching that can impact the design of future spintronics devices, such as SOT-MRAM. 
    more » « less