Deep learning has been successful in various domains including image recognition, speech recognition and natural language processing. However, the research on its application in graph mining is still in an early stage. Here we present Model R, a neural network model created to provide a deep learning approach to link weight prediction problem. This model extracts knowledge of nodes from known links’ weights and uses this knowledge to predict unknown links’ weights. We demonstrate the power of Model R through experiments and compare it with stochastic block model and its derivatives. Model R shows that deep learning can be successfully applied to link weight prediction and it outperforms stochastic block model and its derivatives by up to 73% in terms of prediction accuracy. We anticipate this new approach to provide effective solutions to more graph mining tasks.
more »
« less
Wireless Sensing Technology Combined with Facial Expression to Realize Multimodal Emotion Recognition
Emotions significantly impact human physical and mental health, and, therefore, emotion recognition has been a popular research area in neuroscience, psychology, and medicine. In this paper, we preprocess the raw signals acquired by millimeter-wave radar to obtain high-quality heartbeat and respiration signals. Then, we propose a deep learning model incorporating a convolutional neural network and gated recurrent unit neural network in combination with human face expression images. The model achieves a recognition accuracy of 84.5% in person-dependent experiments and 74.25% in person-independent experiments. The experiments show that it outperforms a single deep learning model compared to traditional machine learning algorithms.
more »
« less
- Award ID(s):
- 2146354
- PAR ID:
- 10415937
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 23
- Issue:
- 1
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 338
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A scalp-recording electroencephalography (EEG)-based brain-computer interface (BCI) system can greatly improve the quality of life for people who suffer from motor disabilities. Deep neural networks consisting of multiple convolutional, LSTM and fully-connected layers are created to decode EEG signals to maximize the human intention recognition accuracy. However, prior FPGA, ASIC, ReRAM and photonic accelerators cannot maintain sufficient battery lifetime when processing realtime intention recognition. In this paper, we propose an ultra-low-power photonic accelerator, MindReading, for human intention recognition by only low bit-width addition and shift operations. Compared to prior neural network accelerators, to maintain the real-time processing throughput, MindReading reduces the power consumption by 62.7% and improves the throughput per Watt by 168%.more » « less
-
Recent advances in machine learning and deep neural networks have led to the realization of many important applications in the area of personalized medicine. Whether it is detecting activities of daily living or analyzing images for cancerous cells, machine learning algorithms have become the dominant choice for such emerging applications. In particular, the state-of-the-art algorithms used for human activity recognition (HAR) using wearable inertial sensors utilize machine learning algorithms to detect health events and to make predictions from sensor data. Currently, however, there remains a gap in research on whether or not and how activity recognition algorithms may become the subject of adversarial attacks. In this paper, we take the first strides on (1) investigating methods of generating adversarial example in the context of HAR systems; (2) studying the vulnerability of activity recognition models to adversarial examples in feature and signal domain; and (3) investigating the effects of adversarial training on HAR systems. We introduce Adar, a novel computational framework for optimization-driven creation of adversarial examples in sensor-based activity recognition systems. Through extensive analysis based on real sensor data collected with human subjects, we found that simple evasion attacks are able to decrease the accuracy of a deep neural network from 95.1% to 3.4% and from 93.1% to 16.8% in the case of a convolutional neural network. With adversarial training, the robustness of the deep neural network increased on the adversarial examples by 49.1% in the worst case while the accuracy on clean samples decreased by 13.2%.more » « less
-
Abstract A central challenge in face perception research is to understand how neurons encode face identities. This challenge has not been met largely due to the lack of simultaneous access to the entire face processing neural network and the lack of a comprehensive multifaceted model capable of characterizing a large number of facial features. Here, we addressed this challenge by conducting in silico experiments using a pre-trained face recognition deep neural network (DNN) with a diverse array of stimuli. We identified a subset of DNN units selective to face identities, and these identity-selective units demonstrated generalized discriminability to novel faces. Visualization and manipulation of the network revealed the importance of identity-selective units in face recognition. Importantly, using our monkey and human single-neuron recordings, we directly compared the response of artificial units with real primate neurons to the same stimuli and found that artificial units shared a similar representation of facial features as primate neurons. We also observed a region-based feature coding mechanism in DNN units as in human neurons. Together, by directly linking between artificial and primate neural systems, our results shed light on how the primate brain performs face recognition tasks.more » « less
-
null (Ed.)Due to insufficient training data and the high computational cost to train a deep neural network from scratch, transfer learning has been extensively used in many deep-neural-network-based applications. A commonly used transfer learning approach involves taking a part of a pre-trained model, adding a few layers at the end, and re-training the new layers with a small dataset. This approach, while efficient and widely used, imposes a security vulnerability because the pre-trained model used in transfer learning is usually publicly available, including to potential attackers. In this paper, we show that without any additional knowledge other than the pre-trained model, an attacker can launch an effective and efficient brute force attack that can craft instances of input to trigger each target class with high confidence. We assume that the attacker has no access to any target-specific information, including samples from target classes, re-trained model, and probabilities assigned by Softmax to each class, and thus making the attack target-agnostic. These assumptions render all previous attack models inapplicable, to the best of our knowledge. To evaluate the proposed attack, we perform a set of experiments on face recognition and speech recognition tasks and show the effectiveness of the attack. Our work reveals a fundamental security weakness of the Softmax layer when used in transfer learning settingsmore » « less