skip to main content


Title: Observation of Weyl exceptional rings in thermal diffusion
A non-Hermitian Weyl equation indispensably requires a three-dimensional (3D) real/synthetic space, and it is thereby perceived that a Weyl exceptional ring (WER) will not be present in thermal diffusion given its purely dissipative nature. Here, we report a recipe for establishing a 3D parameter space to imitate thermal spinor field. Two orthogonal pairs of spatiotemporally modulated advections are employed to serve as two synthetic parameter dimensions, in addition to the inherent dimension corresponding to heat exchanges. We first predict the existence of WER in our hybrid conduction–advection system and experimentally observe the WER thermal signatures verifying our theoretical prediction. When coupling two WERs of opposite topological charges, the system further exhibits surface-like and bulk topological states, manifested as stationary and continuously changing thermal processes, respectively, with good robustness. Our findings reveal the long-ignored topological nature in thermal diffusion and may empower distinct paradigms for general diffusion and dissipation controls.  more » « less
Award ID(s):
1420620
NSF-PAR ID:
10415960
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
15
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Single crystalline BaMnSb2is considered as a 3D Weyl semimetal with the 2D electronic structure containing Dirac cones from the Sb sheet. We report experimental investigation of low-temperature cleaved BaMnSb2surfaces using scanning tunneling microscopy/spectroscopy and low energy electron diffraction. By natural cleavage, we find two terminations: one is Ba (above the orthorhombically distorted Sb sheet) and another Sb2 (at the surface of the Sb/Mn/Sb sandwich layer). Both terminations show the 2 × 1 surface reconstructions, with drastically different morphologies and electronic properties, however. The reconstructed structures, defect types and nature of the electronic structures of the two terminations are extensively studied. The quasiparticle interference (QPI) analysis is conducted at the energy range between −2 V and 2 V, although no interesting states are observed near the Fermi level, the surface-projected electronic band structures strongly depend on the surface termination above 1.6 V. The existence of defects can greatly modify the local density of states to create electronic phase separations on the surface in the order of tens of nm scale. Our observation on the atomic structures of the terminations and the corresponding electronic structures provides critical information towards an understanding of topological properties of BaMnSb2.

     
    more » « less
  2. Spin-to-charge conversion (S2CC) processes in thin-film heterostructures have attracted much attention in recent years. Here, we describe the S2CC in a 3D topological insulator Bi2Te3 interfaced with an epitaxial film of Fe75Co25. The quantification of spin-to-charge conversion is made with two complementary techniques: ferromagnetic resonance based inverse spin Hall effect (ISHE) at GHz frequencies and femtosecond light-pulse induced emission of terahertz (THz) radiation. The role of spin rectification due to extrinsic effects like anisotropic magnetoresistance (AMR) and planar Hall effects (PHE) is pronounced at the GHz timescale, whereas the THz measurements do not show any detectible signal, which could be attributed to AMR or PHE. This result may be due to (i) homodyne rectification at GHz, which is absent in THz measurements and (ii) laser-induced thermal spin current generation and magnetic dipole radiation in THz measurements, which is completely absent in GHz range. The converted charge current has been analyzed using the spin diffusion model for the ISHE. We note that regardless of the differences in timescales, the spin diffusion length in the two cases is comparable. Our results aid in understanding the role of spin pumping timescales in the generation of ISHE signals.

     
    more » « less
  3. Nontrivial topology in condensed-matter systems enriches quantum states of matter to go beyond either the classification into metals and insulators in terms of conventional band theory or that of symmetry-broken phases by Landau’s order parameter framework. So far, focus has been on weakly interacting systems, and little is known about the limit of strong electron correlations. Heavy fermion systems are a highly versatile platform to explore this regime. Here we report the discovery of a giant spontaneous Hall effect in the Kondo semimetal C e 3 B i 4 P d 3 that is noncentrosymmetric but preserves time-reversal symmetry. We attribute this finding to Weyl nodes—singularities of the Berry curvature—that emerge in the immediate vicinity of the Fermi level due to the Kondo interaction. We stress that this phenomenon is distinct from the previously detected anomalous Hall effect in materials with broken time-reversal symmetry; instead, it manifests an extreme topological response that requires a beyond-perturbation-theory description of the previously proposed nonlinear Hall effect. The large magnitude of the effect in even tiny electric and zero magnetic fields as well as its robust bulk nature may aid the exploitation in topological quantum devices. 
    more » « less
  4. Umetani, N. ; Wojtan, C. ; Vouga, E. (Ed.)
    Most non-photorealistic rendering (NPR) methods for line drawing synthesis operate on a static shape. They are not tailored to process animated 3D models due to extensive per-frame parameter tuning needed to achieve the intended look and natural transition. This paper introduces a framework for interactive line drawing synthesis from animated 3D models based on a learned style space for drawing representation and interpolation. We refer to style as the relationship between stroke placement in a line drawing and its corresponding geometric properties. Starting from a given sequence of an animated 3D character, a user creates drawings for a set of keyframes. Our system embeds the raster drawings into a latent style space after they are disentangled from the underlying geometry. By traversing the latent space, our system enables a smooth transition between the input keyframes. The user may also edit, add, or remove the keyframes interactively, similar to a typical keyframe-based workflow. We implement our system with deep neural networks trained on synthetic line drawings produced by a combination of NPR methods. Our drawing-specific supervision and optimization-based embedding mechanism allow generalization from NPR line drawings to user-created drawings during run time. Experiments show that our approach generates high-quality line drawing animations while allowing interactive control of the drawing style across frames. 
    more » « less
  5. Abstract We have obtained constraints on the nanoflare energy distribution and timing for the heating of a coronal bright point. Observations of the bright point were made using the Extreme Ultraviolet Imaging Spectrometer on Hinode in slot mode, which collects a time series of monochromatic images of the region leading to unambiguous temperature diagnostics. The Enthalpy-Based Thermal Evolution of Loops model was used to simulate nanoflare heating of the bright point and generate a time series of synthetic intensities. The nanoflare heating in the model was parameterized in terms of the power-law index α of the nanoflare energy distribution, which is ∝ E − α ; average nanoflare frequency f ; and the number N of magnetic strands making up the observed loop. By comparing the synthetic and observed light curves, we inferred the region of the model parameter space ( α , f , N ) that was consistent with the observations. Broadly, we found that N and f are inversely correlated with one another, while α is directly correlated with either N or f . These correlations are likely a consequence of the region requiring a certain fixed energy input, which can be achieved in various ways by trading off among the different parameters. We also find that a value of α > 2 generally gives the best match between the model and observations, which indicates that the heating is dominated by low-energy events. Our method of using monochromatic images, focusing on a relatively simple structure, and constraining nanoflare parameters on the basis of statistical properties of the intensity provides a versatile approach to better understand the nature of nanoflares and coronal heating. 
    more » « less