Abstract Binder jetting is an additive manufacturing process utilizing a liquid-based binding agent to selectively join the material in a powder bed. It is capable of manufacturing complex-shaped parts from a variety of materials including metals, ceramics, and polymers. This paper provides a comprehensive review on currently available reports on metal binder jetting from both academia and industry. Critical factors and their effects in metal binder jetting are reviewed and divided into two categories, namely material-related factors and process-related parameters. The reported data on density, dimensional and geometric accuracy, and mechanical properties achieved by metal binder jetting are summarized. With parameter optimization and a suitable sintering process, ten materials have been proven to achieve a relative density of higher than 90%. Indepth discussion is provided regarding densification as a function of various attributes of powder packing, printing, and post-processing. A few grades of stainless steel obtained equivalent or superior mechanical properties compared to cold working. Although binder jetting has gained its popularity in the past several years, it has not been sufficiently studied compared with other metal additive manufacturing (AM) processes such as powder bed fusion and directed energy deposition. Some aspects that need further research include the understanding of powder spreading process, binder-powder interaction, and part shrinkage.
more »
« less
An Experimental Study on the Dynamics of Binder Drops Impacting on a Powder Surface in Binder Jetting Additive Manufacturing
Binder jetting additive manufacturing (AM) is an innovative form of 3D printing that generates complex and advanced structures of various materials by jetting binder drops onto a powder bed. The drops on the bed cure the powder to form structures in a quick and efficient manner. However, the method suffers several flaws including manufacturing inconsistencies and coarse resolution of structures. These flaws may be explained by complex interactions between the binder drop and the powder during the printing process. Therefore, a better understanding of these interactions will be instrumental in the development of binder jetting for fabricating multipurpose, higher quality functional structures. In this study, these complex interactions are analyzed during the impact and subsequent processes. The impact dynamics of binder drops on a powder surface were examined by using a custom impingement rig under various test conditions (i.e., different impact velocities and binder viscosities). A high-speed imaging system was used to capture the transient details of the drop-powder interactions. This study concludes that an increase in drop impact velocity results in a greater range of particle ejection. A lower drop viscosity results in a higher dry spread of particles while a higher drop viscosity results in a greater number of binder-encapsulated particles. Across all cases, binder drops absorb particle granules at a rate inverse to their viscosity.
more »
« less
- Award ID(s):
- 2242311
- PAR ID:
- 10416025
- Date Published:
- Journal Name:
- AIAA SCITECH 2023 Forum
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Binder jetting (BJ) is an additive manufacturing process that uses a powder feedstock in a layer wise process to print parts by selectively depositing a liquid binder into the powder bed using inkjet technology. This study presents findings from high-speed synchrotron imaging of binder droplet-interaction during the BJ printing process. A custom laboratory-scale BJ test platform was used for testing which enabled control of relevant process parameters including powder material, print geometry, spacing between droplets, powder bed density, and powder moisture content. Powder ejection was observed above the powder bed surface and powder relocation due to droplet impact was observed below the powder bed surface. Powder relocation was observed to be sensitive to powder material, powder bed density, powder bed moisture, droplet spacing, and print geometry. Increasing powder bed density was found to increase particle ejection velocity but reduce the total number of particles ejected. Process parameters that increase binder / moisture content in the powder bed were found to reduce powder ejection. The number of ejected powder particles was reduced for lower droplet spacings. Both powder ejection and powder relocation below the powder bed were reduced by treating the surface of the powder bed with a water/triethylene glycol (TEG) mixture before printing. Results from this study help to build understanding of the physical mechanisms in the BJ printing process that may contribute to formation of defects observed in final parts.more » « less
-
null (Ed.)Binder Jetting (BJ) is a low-cost Additive Manufacturing (AM) process that uses inkjet technology to selectively bind particles in a powder bed. BJ relies on the ability to control, not only the placement of binder on the surface but also its imbibition into the powder bed. This is a complex process in which picoliter-sized droplets impact powder beds at velocities of 1–10 m/s. However, the effects of printing parameters such as droplet velocity, size, spacing, and inter-arrival time on saturation level (fraction of pore space filled with binder) and line formation (merging of droplets to form a line) are unknown. Prior attempts to predict saturation levels with simple measurements of droplet primitives and capillary pressure assume that droplet/powder interactions are dominated by static equilibrium and neglect the impact of printing parameters. This study analyzes the influence of these parameters on the effective saturation level and conditions for line formation when printing single lines into powder beds of varied materials (316 stainless steel, 420 stainless steel, and alumina) and varied particle size (d50=10–47 µm). Results show that increasing droplet velocity or droplet spacing decreases effective saturation while droplet spacing, velocity, and inter-arrival time affect line formation. At constant printing velocity, the conditions for successful line printing are shown to be a function of droplet spacing and square root of the droplet inter-arrival time analogous to the Washburn model for infiltration into a porous media. The results have implications to maximizing build rates and improving quality of small features in BJ.more » « less
-
In the binder jetting (BJ) process, as in most of powder bed additive manufacturing technologies, the powder is periodically recoated onto the substrate layer-by-layer. The elements of the current deposited layer corresponding to the part being manufactured are bonded together using a polymeric binder. In all cases that require a thermal process for sintering, the internal structure of the finished part is defined by the internal structure of the powder bed. This article focuses on the discrete element modelling (DEM) of various powder spreading methods during recoating and their impact on the powder bed structure particularly applied to binder jetting technology. The article demonstrates that despite the thinness of the deposited layers, they typically exhibit porosity and particle and pore size non-uniformities along the build-up direction. These irregularities contribute to the anisotropic sintering shrinkage observed in green BJ bodies during experiments. However, the experiments presented confirmed by modelling show that without binder deposition, the powder bed – except for a narrow surface layer – remains relatively uniform, regardless of the recoating method used. It is the binder injection into the porous structure of the powder bed that disrupts this homogeneity, locks in large surface pores, and exacerbates the effects of powder segregation during spreading. Finally, several strategies, explored via simulation, are proposed to reduce porosity variations during BJ: using a combined roller-wide blade method for powder spreading and a two-hopper approach, where each layer consists of small particles deposited over larger ones.more » « less
-
Binder jetting is a powder bed additive manufacturing process where an object is created by depositing liquid binder onto the surface of powder, selectively binding particles in each layer. The quality of the as-printed parts is influenced not only by process parameters such as layer thickness, binder saturation, print speed, and drying time but also by the location within the build box. This study highlights the location-dependent nature of green density and dimensional accuracy in the as-printed samples, and the observed trends are thoroughly discussed. A conventional powder spreading using a single roller was compared with a double roller to maximize powder packing and bed uniformity prior to binder jetting process. The significance of these observations lies in their impact on densification behavior, shrinkage, and the final geometry of the printed part.more » « less
An official website of the United States government

