Background Existing fire spread models focus exclusively on wildland or urban fire simulation. Aims This study aims at an offline coupling of two fire spread models to enable a continuous simulation of a wildfire incident transitioning from wildland into wildland–urban interface (WUI) communities, evaluate the effects of wind input on simulation results and study the influence of building types on fire spread patterns. Methods The selected models are WRF-Fire, a wildland fire behaviour simulation platform, and SWUIFT, a model for fire spread inside the WUI. The 2021 Marshall Fire serves as the case study. A map of the fire’s timeline and location is generated using public information. Three simulation scenarios are analysed to study the effects of wind input resolution and building type on the predicted fire spread and damage. Key results The most accurate results are obtained using a high-resolution wind input and when incorporating different building types. Conclusions The offline coupling of models provides a reliable solution for fire spread simulation. Fire-resistant buildings likely helped limit community fire spread during the Marshall Fire. Implications The research is a first step toward developing simulation capabilities to predict the spread of wildfires within the wildland, WUI and urban environments. 
                        more » 
                        « less   
                    
                            
                            Toward a Better Understanding of Wildfire Behavior in the Wildland‐Urban Interface: A Case Study of the 2021 Marshall Fire
                        
                    
    
            Abstract On 30 December 2021, the Marshall Fire devastated the Boulder, Colorado region. The fire initiated in fine fuels in open space just southeast of Boulder and spread rapidly due to the strong, downslope winds that penetrated into the Boulder Foothills. Despite the increasing occurrence of wildland‐urban interface (WUI) disasters, many questions remain about how fires progress through vegetation and the built environment. To help answer these questions for the Marshall Fire, we use a coupled fire‐atmosphere model and Doppler on Wheels (DOW) observations to study the fire's progression as well as examine the physical drivers of its spread. Evaluation of the model using the DOW suggests that the model is able to capture general characteristics of the flow field; however, it does not produce as robust of a hydraulic jump as the one observed. Our results highlight limitations of the model that should be addressed for successful WUI simulations. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2113207
- PAR ID:
- 10416150
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 10
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Fuel break effectiveness in wildland-urban interface (WUI) is not well understood during downslope wind-driven fires even though various fuel treatments are conducted across the western United States. The aim of this paper is to examine the efficacy of WUI fuel breaks under the influence of strong winds and dry fuels, using the 2018 Camp Fire as a case study. The operational fire growth model Prometheus was used to show: (1) downstream impacts of 200 m and 400 m wide WUI fuel breaks on fire behavior and evacuation time gain; (2) how the downstream fire behavior was affected by the width and fuel conditions of the WUI fuel breaks; and (3) the impacts of background wind speeds on the efficacy of WUI fuel breaks. Our results indicate that WUI fuel breaks may slow wildfire spread rates by dispersing the primary advancing fire front into multiple fronts of lower intensity on the downstream edge of the fuel break. However, fuel break width mattered. We found that the lateral fire spread and burned area were reduced downstream of the 400 m wide WUI fuel break more effectively than the 200 m fuel break. Further sensitivity tests showed that wind speed at the time of ignition influenced fire behavior and efficacy of management interventions.more » « less
- 
            Abstract Past studies reported a drastic growth in the wildland–urban interface (WUI), the location where man‐made structures meet or overlap wildland vegetation. Fighting fire is difficult in the WUI due to the combination of wildland and structural fuels, and therefore, WUI areas are characterized by frequent damage and loss of structures from wildfires. Recent wildland fire policy has targeted fire prevention, evacuation planning, fuel treatment, and home hardening in WUI areas. Therefore, it is important to understand the occurrence of wildfire events relative to the location of the WUI. In this work, we have reported the occurrences of wildfires with respect to the WUI and quantified how much of the WUI is on complex topography in California, which intensifies fire behavior and complicates fire suppression. We have additionally analyzed the relative importance of WUI‐related parameters, such as housing density, vegetation density, and distance to wildfires, as well as topographic factors, such as slope, elevation, aspect, and surface roughness, on the occurrence of large and small wildfires and the burned area of large wildfires near the WUI. We found that a very small percentage of wildfire ignition points and large wildfire‐burned areas (>400 ha or 1000 acres) were located in the WUI areas. A small percentage of large wildfires were encountered in WUI (3%), and the WUI area accounted for only 4% of the area burned, which increased to 5% and 56%, respectively, outside WUI (5‐km buffer from WUI). Similarly, 66% of fires ignited outside WUI, whereas only 3.6% ignited within WUI. Results from this study have implications for fuel management and infrastructure hardening, as well as for fire suppression and community response.more » « less
- 
            We analyzed meteorological conditions that occurred during the December 2021 Boulder, Colorado, downslope windstorm. This event is of particular interest due to the ignition and spread of the Marshall Fire, which quickly became the most destructive wildfire in Colorado history. Observations indicated a rapid onset of fast winds with gusts as high as 51 m/s that generally remained confined to the east-facing slopes and foothills of the Rockies, similar to previous Boulder windstorms. After about 12 h, the windstorm shifted into a second, less intense phase. Midtropospheric winds above northwestern Colorado weakened prior to the onset of strong surface winds and the event strength started waning as stronger winds moved back into the area. Forecasts from NOAA high-resolution operational models initialized more than a few hours prior to windstorm onset did not simulate the start time, development rate and/or maximum strength of the windstorm correctly, and day-ahead runs even failed to develop strong downslope windstorms at all. Idealized modeling confirmed that predictability was limited by errors on the synoptic scale affecting the midtropospheric wind conditions representing the Boulder windstorm’s inflow environment. Gust forecasts for this event were critically evaluated.more » « less
- 
            Fires in the wildland-urban interface (WUI) are a global issue with growing importance. However, the impact of WUI fires on air quality and health is less understood compared to that of fires in wildland. We analyze WUI fire impacts on air quality and health at the global scale using a multi-scale atmospheric chemistry model—the Multi-Scale Infrastructure for Chemistry and Aerosols model (MUSICA). WUI fires have notable impacts on key air pollutants [e.g., carbon monoxide (CO), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and ozone (O3)]. The health impact of WUI fire emission is disproportionately large compared to wildland fires primarily because WUI fires are closer to human settlement. Globally, the fraction of WUI fire–caused annual premature deaths (APDs) to all fire–caused APDs is about three times of the fraction of WUI fire emissions to all fire emissions. The developed model framework can be applied to address critical needs in understanding and mitigating WUI fires and their impacts.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
