Many cities are experiencing more frequent extreme heat during hot summers. With the rise of global temperature, the thermal comfort in urban areas become even worse. Quantitative information of the spatial distributions of urban heat has become increasingly important for resilience and adaptation to climate change in cities. This study compares satellite-derived land surface temperature (LST) and urban microclimate modeling-based mean radiant temperature (Tmrt) for mapping the urban heat distributions in Philadelphia, Pennsylvania, USA. The LST was estimated based on Landsat 8 thermal imagery with a spatial resolution of around 100 m, while the Tmrt was simulated based on high resolution LiDAR and national aerial imagery program multispectral aerial imageries with a spatial resolution of 1 m. Result shows that both LST and Tmrt show a similar general pattern of the urban heat across the study area, while the Tmrt presents much more details of the heat variations street by street and neighborhood by neighborhood. The LST tends to have a stronger relationship with the Tmrt on building roofs, which are usually not the place for human activities. This studyprovides evidence for choosing more appropriate metrics in urban heat-related studies.
more »
« less
Resolving Radiant: Combining Spatially Resolved Longwave and Shortwave Measurements to Improve the Understanding of Radiant Heat Flux Reflections and Heterogeneity
We introduce and demonstrate new measurement and modeling techniques to fully resolve the spatial variation in shortwave and longwave radiant heat transfer in the outdoor environment. We demonstrate for the first time a way to directly resolve the shortwave radiant heat transfer from terrestrial reflected and diffuse sky components along with the standard direct solar radiation using an adapted thermopile array and ray-tracing modeling techniques validated by 6-direction net radiometer. Radiant heat transfer is a major component of heat experienced in cities. It has significant spatial variability that is most easily noticed as one moves between shade and direct solar exposure. But even on a cloudy and warm day the invisible longwave infrared thermal radiation from warm surfaces makes up a larger fraction of heat experienced than that caused by convection with surrounding air. Under warm or hot climate conditions in cities, radiant heat transfer generally accounts for the majority of heat transfer to people. Both the shortwave (visible/solar) and the longwave (infrared/thermal) have significant spatial variation. We demonstrate sensor methods and data analysis techniques to resolve how these radiant fluxes can change the heat experienced by >1 kWm −2 across small distances. The intense solar shortwave radiation is easily recognized outdoors, but longwave is often considered negligible. Longwave radiation from heat stored in urban surfaces is more insidious as it can cause changes invisible to the eye. We show how it changes heat experienced by >200 Wm −2 . These variations are very common and also occur at the scale of a few meters.
more »
« less
- Award ID(s):
- 1942805
- PAR ID:
- 10416261
- Date Published:
- Journal Name:
- Frontiers in Sustainable Cities
- Volume:
- 4
- ISSN:
- 2624-9634
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Outdoor heat stress is a growing problem in cities during hot weather. City planners and designers require more pedestrian-centered approaches to understand sidewalk microclimates. Radiation loading, as quantified by mean radiant temperature (TMRT), is a key factor driving poor thermal comfort. Street trees provide shade and consequently reduce pedestrian TMRT. However, placement of trees to optimize the cooling they provide is not yet well understood. We apply the newly-developed TUF-Pedestrian model to quantify the impacts of sidewalk tree coverage on pedestrian TMRT during summer for a lowrise neighbourhood in a midlatitude city. TUF-Pedestrian captures the detailed spatio-temporal variation of direct shading and directional longwave radiation loading on pedestrians resulting from tree shade. We conduct 190 multi-day simulations to assess a full range of sidewalk street tree coverages for five high heat exposure locations across four street orientations. We identify street directions that exhibit the largest TMRT reductions during the hottest periods of the day as a result of tree planting. Importantly, planting a shade tree on a street where none currently exist provides approximately 1.5–2 times as much radiative cooling to pedestrians as planting the same tree on a street where most of the sidewalk already benefits from tree shade. Thus, a relatively equal distribution of trees among sun-exposed pedestrian routes and sidewalks within a block or neighbourhood avoids mutual shading and therefore optimizes outdoor radiative heat reduction per tree during warm conditions. Ultimately, street tree planting should be a place-based decision and account for additional environmental and socio-political factors.more » « less
-
Buildings use 40% of the global energy consumption and emit 30% of CO2 emissions. Of the total building energy, 30-40% is for building heating and cooling systems, which regulate the indoor thermal environment and provide thermal comfort to occupants. Most buildings use forced air technology in the United States to deliver heating/cooling to the targeted thermal zones. Researchers have suggested using radiant heating and cooling systems as a better alternative to all-air systems. Radiant systems supply heating or cooling directly to the building space using radiation released by the heated or cooled building enclosure via the embedded heating or cooling tubes. It is unsure whether the radiant heating and cooling system can provide better thermal comfort to occupants. Moreover, the evaluation method for thermal comfort in the current standard is only suitable for forced air systems. A new plan shall be developed to evaluate the radiation system’s thermal comfort. This paper reviews the experiment-based studies on the thermal comfort of radiant systems. According to the experimental studies regarding thermal comfort and radiant systems, the key findings are concluded to help guide the evaluation of thermal comfort for radiant systems.more » « less
-
Accurate multidecadal radiative flux records are vital to understand Arctic amplification and constrain climate model uncertainties. Uncertainty in the NASA Clouds and the Earth’s Radiant Energy System (CERES)-derived irradiances is larger over sea ice than any other surface type and comes from several sources. The year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the central Arctic provides a rare opportunity to explore uncertainty in CERES-derived radiative fluxes. First, a systematic and statistically robust assessment of surface shortwave and longwave fluxes was conducted using in situ measurements from MOSAiC flux stations. The CERES Synoptic 1degree (SYN1deg) product overestimates the downwelling shortwave flux by +11.40 Wm–2 and underestimates the upwelling shortwave flux by –15.70 Wm–2 and downwelling longwave fluxes by –12.58 Wm–2 at the surface during summer. In addition, large differences are found in the upwelling longwave flux when the surface approaches the melting point (approximately 0°C). The biases in downwelling shortwave and longwave fluxes suggest that the atmosphere represented in CERES is too optically thin. The large negative bias in upwelling shortwave flux can be attributed in large part to lower surface albedo (–0.15) in satellite footprint relative to surface sensors. Additionally, the results show that the spectral surface albedo used in SYN1deg overestimates albedo in visible and mid-infrared bands. A series of radiative transfer model perturbation experiments are performed to quantify the factors contributing to the differences. The CERES-MOSAiC broadband albedo differences (approximately 20 Wm–2) explain a larger portion of the upwelling shortwave flux difference than the spectral albedo shape differences (approximately 3 Wm–2). In addition, the differences between perturbation experiments using hourly and monthly MOSAiC surface albedo suggest that approximately 25% of the sea ice surface albedo variability is explained by factors not correlated with daily sea ice concentration variability. Biases in net shortwave and longwave flux can be reduced to less than half by adjusting both albedo and cloud inputs toward observed values. The results indicate that improvements in the surface albedo and cloud data would substantially reduce the uncertainty in the Arctic surface radiation budget derived from CERES data products.more » « less
-
null (Ed.)Buildings use 40% of the global energy consumption and emit 30% of the CO2 emissions [1]. Of the total building energy, 30-40% are for building heating and cooling systems, which regulate the indoor thermal environment and provide thermal comfort to occupants. In the United States, most buildings use forced air technology to deliver heating/cooling to the targeted thermal zones. However, this system may cause complaints about thermal comfort from inhabitants due to excessive draft movement, inhomogeneous conditioning, and difficulty in accurately controlling the temperature for a system serving multiple rooms. Therefore, researchers have suggested using a radiant heating and cooling system as a better alternative to all-air systems to address these issues. Radiant systems supply heating or cooling directly to the building space using radiation released by the heated or cooled building enclosure via the embedded heating or cooling tubes. In the cooling season, the radiant system often works with a separated dehumidifier to meet space latent and sensible cooling load (called separate sensible and latent cooling system SSLC). The SSLC has shown higher efficiency than forced air systems. However, it is unsure whether the radiant heating and cooling system can provide better thermal comfort to occupants. Moreover, the evaluation method for thermal comfort in the current standard is suitable for forced air systems. Therefore, a new method shall be developed to evaluate the radiation system’s thermal comfort. In this paper, we review the experiment-based studies on the thermal comfort of radiant systems. According to the experimental studies regarding thermal comfort and radiant systems, the key findings are concluded to help guide the evaluation of thermal comfort for radiant systems.more » « less
An official website of the United States government

