Working remotely from home during the COVID-19 pandemic has resulted in significant shifts and disruptions in the personal and work lives of millions of information workers and their teams. We examined how sleep patterns---an important component of mental and physical health---relates to teamwork. We used wearable sensing and daily questionnaires to examine sleep patterns, affect, and perceptions of teamwork in 71 information workers from 22 teams over a ten-week period. Participants reported delays in sleep onset and offset as well as longer sleep duration during the pandemic. A similar shift was found in work schedules, though total work hours did not change significantly. Surprisingly, we found that more sleep was negatively related to positive affect, perceptions of teamwork, and perceptions of team productivity. However, a greater misalignment in the sleep patterns of members in a team predicted positive affect and teamwork after accounting for individual differences in sleep preferences. A follow-up analysis of exit interviews with participants revealed team-working conventions and collaborative mindsets as prominent themes that might help explain some of the ways that misalignment in sleep can affect teamwork. We discuss implications of sleep and sleep misalignment in work-from-home contexts with an eye towards leveraging sleep data to facilitate remote teamwork. 
                        more » 
                        « less   
                    
                            
                            The Dual Effects of Team Contest Design on On-Demand Service Work Schedules
                        
                    
    
            Emerging on-demand service platforms (OSPs) have recently embraced teamwork as a strategy for stimulating workers’ productivity and mediating temporal supply and demand imbalances. This research investigates the team contest scheme design problem considering work schedules. Introducing teams on OSPs creates a hierarchical single-leader multi-follower game. The leader (platform) establishes rewards and intrateam revenue-sharing rules for distributing workers’ payoffs. Each follower (team) competes with others by coordinating the schedules of its team members to maximize the total expected utility. The concurrence of interteam competition and intrateam coordination causes dual effects, which are captured by an equilibrium analysis of the followers’ game. To align the platform’s interest with workers’ heterogeneous working-time preferences, we propose a profit-maximizing contest scheme consisting of a winner’s reward and time-varying payments. A novel algorithm that combines Bayesian optimization, duality, and a penalty method solves the optimal scheme in the nonconvex equilibrium-constrained problem. Our results indicate that teamwork is a useful strategy with limitations. Under the proposed scheme, team contest always benefits workers. Intrateam coordination helps teams strategically mitigate the negative externalities caused by overcompetition among workers. For the platform, the optimal scheme can direct teams’ schedules toward more profitable market equilibria when workers have inaccurate perceptions of the market. History: This paper has been accepted for the Service Science Special Issue on Innovation in Transportation-Enabled Urban Services. Funding: This work was supported by the National Science Foundation [Grant FW-HTF-P 2222806]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/serv.2023.0320 . 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1854684
- PAR ID:
- 10416457
- Date Published:
- Journal Name:
- Service Science
- ISSN:
- 2164-3962
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Hebrard E., Musliu N. (Ed.)This study explores the design of an On-Demand Multimodal Transit System (ODMTS) that includes segmented mode switching models that decide whether potential riders adopt the new ODMTS or stay with their personal vehicles. It is motivated by the desire of transit agencies to design their network by taking into account both existing and latent demand, as quality of service improves. The paper presents a bilevel optimization where the leader problem designs the network and each rider has a follower problem to decide her best route through the ODMTS. The bilevel model is solved by a decomposition algorithm that combines traditional Benders cuts with combinatorial cuts to ensure the consistency of mode choices by the leader and follower problems. The approach is evaluated on a case study using historical data from Ann Arbor, Michigan, and a user choice model based on the income levels of the potential transit riders.more » « less
- 
            When interacting with other non-competitive decision-making agents, it is critical for an autonomous agent to have inferable behavior: Their actions must convey their intention and strategy. For example, an autonomous car's strategy must be inferable by the pedestrians interacting with the car. We model the inferability problem using a repeated bimatrix Stackelberg game with observations where a leader and a follower repeatedly interact. During the interactions, the leader uses a fixed, potentially mixed strategy. The follower, on the other hand, does not know the leader's strategy and dynamically reacts based on observations that are the leader's previous actions. In the setting with observations, the leader may suffer from an inferability loss, i.e., the performance compared to the setting where the follower has perfect information of the leader's strategy. We show that the inferability loss is upper-bounded by a function of the number of interactions and the stochasticity level of the leader's strategy, encouraging the use of inferable strategies with lower stochasticity levels. As a converse result, we also provide a game where the required number of interactions is lower bounded by a function of the desired inferability loss.more » « less
- 
            We initiate the study of equilibrium refinements based on trembling-hand perfection in extensive-form games with commitment strategies, that is, where one player commits to a strategy first. We show that the standard strong (and weak) Stackelberg equilibria are not suitable for trembling-hand perfection, because the limit of a sequence of such strong (weak) Stackelberg commitment strategies of a perturbed game may not be a strong (weak) Stackelberg equilibrium itself. However, we show that the universal set of all Stackelberg equilibria (i.e., those that are optimal for at least some follower response function) is natural for trembling- hand perfection: it does not suffer from the problem above. We also prove that determining the existence of a Stackelberg equilibrium--refined or not--that gives the leader expected value at least v is NP-hard. This significantly extends prior complexity results that were specific to strong Stackelberg equilibrium.more » « less
- 
            Addressing the urgent global challenge of man-made greenhouse gas emissions and climate change necessitates collaborative action between shipping lines and government regulatory agencies. Aligning with the International Maritime Organization’s emissions reduction strategy, this paper presents a novel bi-level programming model that unifies these stakeholders. On the upper level of the proposed bi-level model, a number of shipping lines optimize retrofitting plans for their vessels to maximize economic benefits. On the lower level, the regulatory agency responds to the carbon reduction efforts by setting retrofitting subsidies and emission penalty rates. This framework represents a multi-leader–single-follower game involving shipping lines and the regulatory agency, and its equilibrium is determined through an equilibrium problem with equilibrium constraints (EPEC). The EPEC comprises multiple single-leader–follower problems, each of which can be formulated as a mathematical program with equilibrium constraints (MPEC). The diagonalization algorithm (DM) is employed for its solution. Simulation studies performed based on a ten-year planning period show that the proposed approach can effectively promote vessel retrofitting and the use of green fuels, which leads to an annual emission reduction of over 50%.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    