skip to main content


Title: Sleep Patterns and Sleep Alignment in Remote Teams during COVID-19

Working remotely from home during the COVID-19 pandemic has resulted in significant shifts and disruptions in the personal and work lives of millions of information workers and their teams. We examined how sleep patterns---an important component of mental and physical health---relates to teamwork. We used wearable sensing and daily questionnaires to examine sleep patterns, affect, and perceptions of teamwork in 71 information workers from 22 teams over a ten-week period. Participants reported delays in sleep onset and offset as well as longer sleep duration during the pandemic. A similar shift was found in work schedules, though total work hours did not change significantly. Surprisingly, we found that more sleep was negatively related to positive affect, perceptions of teamwork, and perceptions of team productivity. However, a greater misalignment in the sleep patterns of members in a team predicted positive affect and teamwork after accounting for individual differences in sleep preferences. A follow-up analysis of exit interviews with participants revealed team-working conventions and collaborative mindsets as prominent themes that might help explain some of the ways that misalignment in sleep can affect teamwork. We discuss implications of sleep and sleep misalignment in work-from-home contexts with an eye towards leveraging sleep data to facilitate remote teamwork.

 
more » « less
Award ID(s):
1928612
NSF-PAR ID:
10473181
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Proceedings of the ACM on Human-Computer Interaction: Computer Supported Collaborative Work
Volume:
6
Issue:
CSCW2
ISSN:
2573-0142
Page Range / eLocation ID:
1 to 31
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Much emphasis has been placed on how the affordances and layouts of an office setting can influence co-worker interactions and perceived team outcomes. Little is known, however, whether perceptions of teamwork and team conflict are affected when the location of work changes from the office to the home. To address this gap, we present findings from a ten-week,in situ study of 91 information workers from 27 US-based teams. We compare three distinct work locations---private and shared workspaces at home as well at the office---and explore how each location may impact individual perceptions of teamwork. While there was no significant association with participants' perceptions of teamwork, results revealed associations of work location with team conflict: participants who worked in a private room at home reported significantly lower team conflict compared to those working in the office. No difference was found for the office and the shared workspace. We further found that the influence of work location on team conflict interacted with job decision latitude and the level of task interdependence among co-workers. We discuss practical implications for full-time work from home (WFH) on teams. Our study adds an important environmental dimension to the literature on remote teaming, which in turn may help organizations as they consider, prepare, or implement more permanent WFH and/or hybrid work policies in the future.

     
    more » « less
  2. During the COVID-19 pandemic, millions of previously co-located information workers had to work from home, a trend expected to become much more commonplace in the future. We interviewed 53 information workers from 17 U.S. teams to understand how this unique extended work-from-home setting influenced teamwork and how they adapted to it. Using a grounded theory approach, we discovered that extended remote work highlighted diversity in team members' home-lives and daily work rhythms. Whereas these types of diversity played only marginal roles for teams in the co-located office, they had a more tangible impact in the work-from-home setting, from coordination delays and interruptions to conflicts related to workload fairness, miscommunication, and trust. Importantly, workers reported that their teams adapted to these challenges by setting explicit norms and standards for online communication and asynchronous collaboration and by promoting general social and situational awareness. We discuss computer-supported designs to help teams manage these latent diversities in an extended remote teamwork setting. 
    more » « less
  3. Synchronous, face-to-face interactions such as brainstorming are considered essential for creative tasks (the old normal). However, face-to-face interactions are difficult to arrange because of the diverse locations and conflicting availability of people—a challenge made more prominent by work-from-home practices during the COVID-19 pandemic (the new normal). In addition, face-to-face interactions are susceptible to cognitive interference. We employ crowdsourcing as an avenue to investigate creativity in asynchronous, online interactions. We choose product ideation,a natural task for the crowd since it requires human insight and creativity into what product features would be novel and useful. We compare the performance of solo crowd workers with asynchronous teams of crowd workers formed without prior coordination. Our findings suggest that, first, crowd teamwork yields fewer but more creative ideas than solo crowdwork. The enhanced team creativity results when (1) team workers reflect on each other’s ideas, and (2) teams are composed of workers of reflective, as opposed to active or mixed, personality types. Second, cognitive interference, known to inhibit creativity in face-to-face teams, may not be significant in crowd teams. Third, teamwork promotes better achievement emotions for crowd workers. These findings provide a basis for trading off creativity, quantity, and worker happiness in setting up crowdsourcing workflows for product ideation. 
    more » « less
  4. Emerging on-demand service platforms (OSPs) have recently embraced teamwork as a strategy for stimulating workers’ productivity and mediating temporal supply and demand imbalances. This research investigates the team contest scheme design problem considering work schedules. Introducing teams on OSPs creates a hierarchical single-leader multi-follower game. The leader (platform) establishes rewards and intrateam revenue-sharing rules for distributing workers’ payoffs. Each follower (team) competes with others by coordinating the schedules of its team members to maximize the total expected utility. The concurrence of interteam competition and intrateam coordination causes dual effects, which are captured by an equilibrium analysis of the followers’ game. To align the platform’s interest with workers’ heterogeneous working-time preferences, we propose a profit-maximizing contest scheme consisting of a winner’s reward and time-varying payments. A novel algorithm that combines Bayesian optimization, duality, and a penalty method solves the optimal scheme in the nonconvex equilibrium-constrained problem. Our results indicate that teamwork is a useful strategy with limitations. Under the proposed scheme, team contest always benefits workers. Intrateam coordination helps teams strategically mitigate the negative externalities caused by overcompetition among workers. For the platform, the optimal scheme can direct teams’ schedules toward more profitable market equilibria when workers have inaccurate perceptions of the market. History: This paper has been accepted for the Service Science Special Issue on Innovation in Transportation-Enabled Urban Services. Funding: This work was supported by the National Science Foundation [Grant FW-HTF-P 2222806]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/serv.2023.0320 . 
    more » « less
  5. https://peer.asee.org/27918 Engineering has become a globally focused career with the need to work with people from diverse backgrounds. Researchers seeking to improve students’ teaming skills have found ways to assess team member effectiveness and development of teaming skills. Despite the emphasis on the importance of developing engineering students’ teaming skills, little research has been conducted on how students develop sensitivity for students from different cultures and backgrounds within teams in first-year engineering programs. Here we define diversity sensitivity as students’ multicultural openness and actions taken to incorporate diverse students. To address the lack of literature on diversity and teaming this work examines the following research questions: What changes occur in students’ diversity sensitivity, multicultural effectiveness, and engineering practices as a result of working in diverse teams? How do students’ perceptions of diversity, affect, and engineering practices change as a result of working on diverse teams? The focus of this paper is on the first phase of this three phase project, in which students’ multicultural openness, diversity sensitivity, and teaming effectiveness were measured quantitatively. Additionally, results from qualitative in-depth interviews further develop emerging trends in the quantitative portions of the work. Survey data were collected from participants enrolled in first semester first-year engineering programs at two institutions (n = 1206) as well as data from the Comprehensive Assessment of Team Member Effectiveness (n = 2763 inclusive of survey participants). We used linear modeling, advanced clustering techniques, and pre-post comparisons to understand underlying student attitudes as well as the ways in which students’ attitudes may shift over the course of the semester. Preliminary results indicate that students’ awareness of diversity increased over the semester; however, unwillingness to take action to support diverse groups also increased. We also found that student attitudes towards teaming are ‘sticky’ and difficult to shift over a single-semester experience even when teaming effectiveness and diversity are explicitly taught in the classroom. Additionally, five teams were observed throughout the course of the semester. These observations were conducted to understand how students interact in ways both explicit and implicit. that may or may not improve belongingness in engineering during teaming activities. Students from teams were interviewed individually after completion of their project to understand their perceptions of diversity. Initial trends indicate a valuing of diversity but a lack of adaptation for diverse individuals due to the demands of engineering tasks. Results of this quantitative and qualitative work were used to further refine instruments and data collection protocols for replication in the subsequent phases of the project. 
    more » « less